Properties

Label 253.3.k.b
Level $253$
Weight $3$
Character orbit 253.k
Analytic conductor $6.894$
Analytic rank $0$
Dimension $10$
CM discriminant -11
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [253,3,Mod(32,253)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(253, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([11, 10]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("253.32");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 253 = 11 \cdot 23 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 253.k (of order \(22\), degree \(10\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.89375068832\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\Q(\zeta_{22})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{22}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{22}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (2 \zeta_{22}^{9} - 2 \zeta_{22}^{8} + \cdots - 1) q^{3} + 4 \zeta_{22}^{2} q^{4} + (3 \zeta_{22}^{9} - \zeta_{22}^{7} + \cdots + 3) q^{5} + ( - 5 \zeta_{22}^{9} + \cdots - 5 \zeta_{22}) q^{9} + ( - 11 \zeta_{22}^{9} + 11 \zeta_{22}^{8} + \cdots + 11) q^{11}+ \cdots + ( - 55 \zeta_{22}^{8} + 66 \zeta_{22}^{7} + \cdots - 55) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 5 q^{3} - 4 q^{4} + 34 q^{5} - 16 q^{9} + 11 q^{11} - 24 q^{12} + 50 q^{15} - 16 q^{16} - 128 q^{20} + 32 q^{23} + 57 q^{25} + 134 q^{27} + 202 q^{31} + 187 q^{33} + 156 q^{36} + 256 q^{37} + 44 q^{44}+ \cdots - 429 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/253\mathbb{Z}\right)^\times\).

\(n\) \(24\) \(166\)
\(\chi(n)\) \(-1\) \(-\zeta_{22}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
32.1
0.959493 0.281733i
0.142315 0.989821i
0.959493 + 0.281733i
−0.415415 + 0.909632i
0.654861 0.755750i
−0.415415 0.909632i
0.142315 + 0.989821i
−0.841254 0.540641i
0.654861 + 0.755750i
−0.841254 + 0.540641i
0 −0.615460 0.710278i 3.36501 2.16256i 0.262387 + 1.82494i 0 0 0 1.15513 8.03410i 0
54.1 0 −2.49223 5.45722i −3.83797 1.12693i 6.35626 + 7.33552i 0 0 0 −17.6763 + 20.3995i 0
87.1 0 −0.615460 + 0.710278i 3.36501 + 2.16256i 0.262387 1.82494i 0 0 0 1.15513 + 8.03410i 0
98.1 0 2.46714 + 0.724417i −2.61944 3.02300i 7.26448 4.66860i 0 0 0 −2.00930 1.29130i 0
131.1 0 3.24982 2.08853i −0.569259 3.95929i −2.85172 6.24440i 0 0 0 2.46061 5.38799i 0
142.1 0 2.46714 0.724417i −2.61944 + 3.02300i 7.26448 + 4.66860i 0 0 0 −2.00930 + 1.29130i 0
164.1 0 −2.49223 + 5.45722i −3.83797 + 1.12693i 6.35626 7.33552i 0 0 0 −17.6763 20.3995i 0
186.1 0 −0.109264 0.759951i 1.66166 + 3.63853i 5.96859 + 1.75253i 0 0 0 8.06985 2.36952i 0
197.1 0 3.24982 + 2.08853i −0.569259 + 3.95929i −2.85172 + 6.24440i 0 0 0 2.46061 + 5.38799i 0
219.1 0 −0.109264 + 0.759951i 1.66166 3.63853i 5.96859 1.75253i 0 0 0 8.06985 + 2.36952i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 32.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.b odd 2 1 CM by \(\Q(\sqrt{-11}) \)
23.c even 11 1 inner
253.k odd 22 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 253.3.k.b 10
11.b odd 2 1 CM 253.3.k.b 10
23.c even 11 1 inner 253.3.k.b 10
253.k odd 22 1 inner 253.3.k.b 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
253.3.k.b 10 1.a even 1 1 trivial
253.3.k.b 10 11.b odd 2 1 CM
253.3.k.b 10 23.c even 11 1 inner
253.3.k.b 10 253.k odd 22 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(253, [\chi])\):

\( T_{2} \) Copy content Toggle raw display
\( T_{3}^{10} - 5 T_{3}^{9} + 25 T_{3}^{8} - 224 T_{3}^{7} + 1120 T_{3}^{6} - 2036 T_{3}^{5} + 478 T_{3}^{4} + \cdots + 1849 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{10} \) Copy content Toggle raw display
$3$ \( T^{10} - 5 T^{9} + \cdots + 1849 \) Copy content Toggle raw display
$5$ \( T^{10} - 34 T^{9} + \cdots + 43546801 \) Copy content Toggle raw display
$7$ \( T^{10} \) Copy content Toggle raw display
$11$ \( T^{10} + \cdots + 25937424601 \) Copy content Toggle raw display
$13$ \( T^{10} \) Copy content Toggle raw display
$17$ \( T^{10} \) Copy content Toggle raw display
$19$ \( T^{10} \) Copy content Toggle raw display
$23$ \( T^{10} + \cdots + 41426511213649 \) Copy content Toggle raw display
$29$ \( T^{10} \) Copy content Toggle raw display
$31$ \( T^{10} + \cdots + 479667335913481 \) Copy content Toggle raw display
$37$ \( T^{10} + \cdots + 71\!\cdots\!89 \) Copy content Toggle raw display
$41$ \( T^{10} \) Copy content Toggle raw display
$43$ \( T^{10} \) Copy content Toggle raw display
$47$ \( (T^{5} - 107 T^{4} + \cdots - 220576883)^{2} \) Copy content Toggle raw display
$53$ \( T^{10} + \cdots + 37\!\cdots\!49 \) Copy content Toggle raw display
$59$ \( T^{10} + \cdots + 84756714608281 \) Copy content Toggle raw display
$61$ \( T^{10} \) Copy content Toggle raw display
$67$ \( T^{10} + \cdots + 36\!\cdots\!09 \) Copy content Toggle raw display
$71$ \( T^{10} + \cdots + 10\!\cdots\!81 \) Copy content Toggle raw display
$73$ \( T^{10} \) Copy content Toggle raw display
$79$ \( T^{10} \) Copy content Toggle raw display
$83$ \( T^{10} \) Copy content Toggle raw display
$89$ \( T^{10} + \cdots + 38\!\cdots\!61 \) Copy content Toggle raw display
$97$ \( T^{10} + \cdots + 11\!\cdots\!49 \) Copy content Toggle raw display
show more
show less