Properties

Label 253.3.k.b
Level 253253
Weight 33
Character orbit 253.k
Analytic conductor 6.8946.894
Analytic rank 00
Dimension 1010
CM discriminant -11
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [253,3,Mod(32,253)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(253, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([11, 10]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("253.32");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: N N == 253=1123 253 = 11 \cdot 23
Weight: k k == 3 3
Character orbit: [χ][\chi] == 253.k (of order 2222, degree 1010, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 6.893750688326.89375068832
Analytic rank: 00
Dimension: 1010
Coefficient field: Q(ζ22)\Q(\zeta_{22})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x10x9+x8x7+x6x5+x4x3+x2x+1 x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a4]\Z[a_1, \ldots, a_{4}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: U(1)[D22]\mathrm{U}(1)[D_{22}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ22\zeta_{22}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(2ζ2292ζ228+1)q3+4ζ222q4+(3ζ229ζ227++3)q5+(5ζ229+5ζ22)q9+(11ζ229+11ζ228++11)q11++(55ζ228+66ζ227+55)q99+O(q100) q + (2 \zeta_{22}^{9} - 2 \zeta_{22}^{8} + \cdots - 1) q^{3} + 4 \zeta_{22}^{2} q^{4} + (3 \zeta_{22}^{9} - \zeta_{22}^{7} + \cdots + 3) q^{5} + ( - 5 \zeta_{22}^{9} + \cdots - 5 \zeta_{22}) q^{9} + ( - 11 \zeta_{22}^{9} + 11 \zeta_{22}^{8} + \cdots + 11) q^{11}+ \cdots + ( - 55 \zeta_{22}^{8} + 66 \zeta_{22}^{7} + \cdots - 55) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 10q+5q34q4+34q516q9+11q1124q12+50q1516q16128q20+32q23+57q25+134q27+202q31+187q33+156q36+256q37+44q44+429q99+O(q100) 10 q + 5 q^{3} - 4 q^{4} + 34 q^{5} - 16 q^{9} + 11 q^{11} - 24 q^{12} + 50 q^{15} - 16 q^{16} - 128 q^{20} + 32 q^{23} + 57 q^{25} + 134 q^{27} + 202 q^{31} + 187 q^{33} + 156 q^{36} + 256 q^{37} + 44 q^{44}+ \cdots - 429 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/253Z)×\left(\mathbb{Z}/253\mathbb{Z}\right)^\times.

nn 2424 166166
χ(n)\chi(n) 1-1 ζ22-\zeta_{22}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
32.1
0.959493 0.281733i
0.142315 0.989821i
0.959493 + 0.281733i
−0.415415 + 0.909632i
0.654861 0.755750i
−0.415415 0.909632i
0.142315 + 0.989821i
−0.841254 0.540641i
0.654861 + 0.755750i
−0.841254 + 0.540641i
0 −0.615460 0.710278i 3.36501 2.16256i 0.262387 + 1.82494i 0 0 0 1.15513 8.03410i 0
54.1 0 −2.49223 5.45722i −3.83797 1.12693i 6.35626 + 7.33552i 0 0 0 −17.6763 + 20.3995i 0
87.1 0 −0.615460 + 0.710278i 3.36501 + 2.16256i 0.262387 1.82494i 0 0 0 1.15513 + 8.03410i 0
98.1 0 2.46714 + 0.724417i −2.61944 3.02300i 7.26448 4.66860i 0 0 0 −2.00930 1.29130i 0
131.1 0 3.24982 2.08853i −0.569259 3.95929i −2.85172 6.24440i 0 0 0 2.46061 5.38799i 0
142.1 0 2.46714 0.724417i −2.61944 + 3.02300i 7.26448 + 4.66860i 0 0 0 −2.00930 + 1.29130i 0
164.1 0 −2.49223 + 5.45722i −3.83797 + 1.12693i 6.35626 7.33552i 0 0 0 −17.6763 20.3995i 0
186.1 0 −0.109264 0.759951i 1.66166 + 3.63853i 5.96859 + 1.75253i 0 0 0 8.06985 2.36952i 0
197.1 0 3.24982 + 2.08853i −0.569259 + 3.95929i −2.85172 + 6.24440i 0 0 0 2.46061 + 5.38799i 0
219.1 0 −0.109264 + 0.759951i 1.66166 3.63853i 5.96859 1.75253i 0 0 0 8.06985 + 2.36952i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 32.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.b odd 2 1 CM by Q(11)\Q(\sqrt{-11})
23.c even 11 1 inner
253.k odd 22 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 253.3.k.b 10
11.b odd 2 1 CM 253.3.k.b 10
23.c even 11 1 inner 253.3.k.b 10
253.k odd 22 1 inner 253.3.k.b 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
253.3.k.b 10 1.a even 1 1 trivial
253.3.k.b 10 11.b odd 2 1 CM
253.3.k.b 10 23.c even 11 1 inner
253.3.k.b 10 253.k odd 22 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S3new(253,[χ])S_{3}^{\mathrm{new}}(253, [\chi]):

T2 T_{2} Copy content Toggle raw display
T3105T39+25T38224T37+1120T362036T35+478T34++1849 T_{3}^{10} - 5 T_{3}^{9} + 25 T_{3}^{8} - 224 T_{3}^{7} + 1120 T_{3}^{6} - 2036 T_{3}^{5} + 478 T_{3}^{4} + \cdots + 1849 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T10 T^{10} Copy content Toggle raw display
33 T105T9++1849 T^{10} - 5 T^{9} + \cdots + 1849 Copy content Toggle raw display
55 T1034T9++43546801 T^{10} - 34 T^{9} + \cdots + 43546801 Copy content Toggle raw display
77 T10 T^{10} Copy content Toggle raw display
1111 T10++25937424601 T^{10} + \cdots + 25937424601 Copy content Toggle raw display
1313 T10 T^{10} Copy content Toggle raw display
1717 T10 T^{10} Copy content Toggle raw display
1919 T10 T^{10} Copy content Toggle raw display
2323 T10++41426511213649 T^{10} + \cdots + 41426511213649 Copy content Toggle raw display
2929 T10 T^{10} Copy content Toggle raw display
3131 T10++479667335913481 T^{10} + \cdots + 479667335913481 Copy content Toggle raw display
3737 T10++71 ⁣ ⁣89 T^{10} + \cdots + 71\!\cdots\!89 Copy content Toggle raw display
4141 T10 T^{10} Copy content Toggle raw display
4343 T10 T^{10} Copy content Toggle raw display
4747 (T5107T4+220576883)2 (T^{5} - 107 T^{4} + \cdots - 220576883)^{2} Copy content Toggle raw display
5353 T10++37 ⁣ ⁣49 T^{10} + \cdots + 37\!\cdots\!49 Copy content Toggle raw display
5959 T10++84756714608281 T^{10} + \cdots + 84756714608281 Copy content Toggle raw display
6161 T10 T^{10} Copy content Toggle raw display
6767 T10++36 ⁣ ⁣09 T^{10} + \cdots + 36\!\cdots\!09 Copy content Toggle raw display
7171 T10++10 ⁣ ⁣81 T^{10} + \cdots + 10\!\cdots\!81 Copy content Toggle raw display
7373 T10 T^{10} Copy content Toggle raw display
7979 T10 T^{10} Copy content Toggle raw display
8383 T10 T^{10} Copy content Toggle raw display
8989 T10++38 ⁣ ⁣61 T^{10} + \cdots + 38\!\cdots\!61 Copy content Toggle raw display
9797 T10++11 ⁣ ⁣49 T^{10} + \cdots + 11\!\cdots\!49 Copy content Toggle raw display
show more
show less