Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [253,3,Mod(32,253)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(253, base_ring=CyclotomicField(22))
chi = DirichletCharacter(H, H._module([11, 10]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("253.32");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 253.k (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a primitive root of unity . We also show the integral -expansion of the trace form.
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
32.1 |
|
0 | −0.615460 | − | 0.710278i | 3.36501 | − | 2.16256i | 0.262387 | + | 1.82494i | 0 | 0 | 0 | 1.15513 | − | 8.03410i | 0 | ||||||||||||||||||||||||||||||||||||||||
54.1 | 0 | −2.49223 | − | 5.45722i | −3.83797 | − | 1.12693i | 6.35626 | + | 7.33552i | 0 | 0 | 0 | −17.6763 | + | 20.3995i | 0 | |||||||||||||||||||||||||||||||||||||||||
87.1 | 0 | −0.615460 | + | 0.710278i | 3.36501 | + | 2.16256i | 0.262387 | − | 1.82494i | 0 | 0 | 0 | 1.15513 | + | 8.03410i | 0 | |||||||||||||||||||||||||||||||||||||||||
98.1 | 0 | 2.46714 | + | 0.724417i | −2.61944 | − | 3.02300i | 7.26448 | − | 4.66860i | 0 | 0 | 0 | −2.00930 | − | 1.29130i | 0 | |||||||||||||||||||||||||||||||||||||||||
131.1 | 0 | 3.24982 | − | 2.08853i | −0.569259 | − | 3.95929i | −2.85172 | − | 6.24440i | 0 | 0 | 0 | 2.46061 | − | 5.38799i | 0 | |||||||||||||||||||||||||||||||||||||||||
142.1 | 0 | 2.46714 | − | 0.724417i | −2.61944 | + | 3.02300i | 7.26448 | + | 4.66860i | 0 | 0 | 0 | −2.00930 | + | 1.29130i | 0 | |||||||||||||||||||||||||||||||||||||||||
164.1 | 0 | −2.49223 | + | 5.45722i | −3.83797 | + | 1.12693i | 6.35626 | − | 7.33552i | 0 | 0 | 0 | −17.6763 | − | 20.3995i | 0 | |||||||||||||||||||||||||||||||||||||||||
186.1 | 0 | −0.109264 | − | 0.759951i | 1.66166 | + | 3.63853i | 5.96859 | + | 1.75253i | 0 | 0 | 0 | 8.06985 | − | 2.36952i | 0 | |||||||||||||||||||||||||||||||||||||||||
197.1 | 0 | 3.24982 | + | 2.08853i | −0.569259 | + | 3.95929i | −2.85172 | + | 6.24440i | 0 | 0 | 0 | 2.46061 | + | 5.38799i | 0 | |||||||||||||||||||||||||||||||||||||||||
219.1 | 0 | −0.109264 | + | 0.759951i | 1.66166 | − | 3.63853i | 5.96859 | − | 1.75253i | 0 | 0 | 0 | 8.06985 | + | 2.36952i | 0 | |||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
11.b | odd | 2 | 1 | CM by |
23.c | even | 11 | 1 | inner |
253.k | odd | 22 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 253.3.k.b | ✓ | 10 |
11.b | odd | 2 | 1 | CM | 253.3.k.b | ✓ | 10 |
23.c | even | 11 | 1 | inner | 253.3.k.b | ✓ | 10 |
253.k | odd | 22 | 1 | inner | 253.3.k.b | ✓ | 10 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
253.3.k.b | ✓ | 10 | 1.a | even | 1 | 1 | trivial |
253.3.k.b | ✓ | 10 | 11.b | odd | 2 | 1 | CM |
253.3.k.b | ✓ | 10 | 23.c | even | 11 | 1 | inner |
253.3.k.b | ✓ | 10 | 253.k | odd | 22 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|