L(s) = 1 | + (−0.615 + 0.710i)3-s + (3.36 + 2.16i)4-s + (0.262 − 1.82i)5-s + (1.15 + 8.03i)9-s + (10.5 − 3.09i)11-s + (−3.60 + 1.05i)12-s + (1.13 + 1.30i)15-s + (6.64 + 14.5i)16-s + (4.82 − 5.57i)20-s + (−12.5 + 19.2i)23-s + (20.7 + 6.08i)25-s + (−13.5 − 8.69i)27-s + (28.7 + 33.2i)31-s + (−4.29 + 9.40i)33-s + (−13.4 + 29.5i)36-s + (−2.36 − 16.4i)37-s + ⋯ |
L(s) = 1 | + (−0.205 + 0.236i)3-s + (0.841 + 0.540i)4-s + (0.0524 − 0.364i)5-s + (0.128 + 0.892i)9-s + (0.959 − 0.281i)11-s + (−0.300 + 0.0882i)12-s + (0.0756 + 0.0873i)15-s + (0.415 + 0.909i)16-s + (0.241 − 0.278i)20-s + (−0.547 + 0.836i)23-s + (0.829 + 0.243i)25-s + (−0.501 − 0.322i)27-s + (0.929 + 1.07i)31-s + (−0.130 + 0.284i)33-s + (−0.374 + 0.820i)36-s + (−0.0639 − 0.444i)37-s + ⋯ |
Λ(s)=(=(253s/2ΓC(s)L(s)(0.643−0.765i)Λ(3−s)
Λ(s)=(=(253s/2ΓC(s+1)L(s)(0.643−0.765i)Λ(1−s)
Degree: |
2 |
Conductor: |
253
= 11⋅23
|
Sign: |
0.643−0.765i
|
Analytic conductor: |
6.89375 |
Root analytic conductor: |
2.62559 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ253(87,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 253, ( :1), 0.643−0.765i)
|
Particular Values
L(23) |
≈ |
1.69570+0.790048i |
L(21) |
≈ |
1.69570+0.790048i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 11 | 1+(−10.5+3.09i)T |
| 23 | 1+(12.5−19.2i)T |
good | 2 | 1+(−3.36−2.16i)T2 |
| 3 | 1+(0.615−0.710i)T+(−1.28−8.90i)T2 |
| 5 | 1+(−0.262+1.82i)T+(−23.9−7.04i)T2 |
| 7 | 1+(32.0−37.0i)T2 |
| 13 | 1+(110.+127.i)T2 |
| 17 | 1+(−120.+262.i)T2 |
| 19 | 1+(−149.−328.i)T2 |
| 29 | 1+(−349.+765.i)T2 |
| 31 | 1+(−28.7−33.2i)T+(−136.+951.i)T2 |
| 37 | 1+(2.36+16.4i)T+(−1.31e3+385.i)T2 |
| 41 | 1+(1.61e3+473.i)T2 |
| 43 | 1+(263.+1.83e3i)T2 |
| 47 | 1−71.6T+2.20e3T2 |
| 53 | 1+(42.3+92.7i)T+(−1.83e3+2.12e3i)T2 |
| 59 | 1+(−48.5+106.i)T+(−2.27e3−2.63e3i)T2 |
| 61 | 1+(529.−3.68e3i)T2 |
| 67 | 1+(126.+37.2i)T+(3.77e3+2.42e3i)T2 |
| 71 | 1+(135.+39.9i)T+(4.24e3+2.72e3i)T2 |
| 73 | 1+(−2.21e3−4.84e3i)T2 |
| 79 | 1+(4.08e3+4.71e3i)T2 |
| 83 | 1+(6.60e3−1.94e3i)T2 |
| 89 | 1+(−115.+133.i)T+(−1.12e3−7.84e3i)T2 |
| 97 | 1+(−25.7+179.i)T+(−9.02e3−2.65e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.84123713957151881566632290730, −11.11139263090727559578810670092, −10.21055114877528576547865775102, −8.964139267502373102317281823453, −7.989293182771418773714737513786, −6.99572267936048805593015819116, −5.91090158079805622357146906748, −4.61390226861914141717539427941, −3.28666650943097015643928597924, −1.70128506675823800958693068423,
1.13105594665935182124037643053, 2.69791902219236920881109064282, 4.25472863532645696695728870452, 5.94622930451951237042750794503, 6.55413675259822337143698782971, 7.40230334578706573414250855673, 8.900148489054212052139254658729, 9.924784880537566336482698130260, 10.73637113258170331633975171190, 11.86236289528458650087528253797