Properties

Label 2-2535-1.1-c1-0-12
Degree $2$
Conductor $2535$
Sign $1$
Analytic cond. $20.2420$
Root an. cond. $4.49911$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·4-s − 5-s + 3·7-s + 9-s − 3·11-s + 2·12-s + 15-s + 4·16-s − 3·17-s + 2·20-s − 3·21-s + 3·23-s + 25-s − 27-s − 6·28-s − 6·29-s + 6·31-s + 3·33-s − 3·35-s − 2·36-s − 9·37-s − 3·41-s + 10·43-s + 6·44-s − 45-s − 12·47-s + ⋯
L(s)  = 1  − 0.577·3-s − 4-s − 0.447·5-s + 1.13·7-s + 1/3·9-s − 0.904·11-s + 0.577·12-s + 0.258·15-s + 16-s − 0.727·17-s + 0.447·20-s − 0.654·21-s + 0.625·23-s + 1/5·25-s − 0.192·27-s − 1.13·28-s − 1.11·29-s + 1.07·31-s + 0.522·33-s − 0.507·35-s − 1/3·36-s − 1.47·37-s − 0.468·41-s + 1.52·43-s + 0.904·44-s − 0.149·45-s − 1.75·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2535 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2535 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2535\)    =    \(3 \cdot 5 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(20.2420\)
Root analytic conductor: \(4.49911\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2535,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8892445123\)
\(L(\frac12)\) \(\approx\) \(0.8892445123\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
5 \( 1 + T \)
13 \( 1 \)
good2 \( 1 + p T^{2} \)
7 \( 1 - 3 T + p T^{2} \)
11 \( 1 + 3 T + p T^{2} \)
17 \( 1 + 3 T + p T^{2} \)
19 \( 1 + p T^{2} \)
23 \( 1 - 3 T + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 - 6 T + p T^{2} \)
37 \( 1 + 9 T + p T^{2} \)
41 \( 1 + 3 T + p T^{2} \)
43 \( 1 - 10 T + p T^{2} \)
47 \( 1 + 12 T + p T^{2} \)
53 \( 1 + 3 T + p T^{2} \)
59 \( 1 - 12 T + p T^{2} \)
61 \( 1 - T + p T^{2} \)
67 \( 1 + p T^{2} \)
71 \( 1 - 9 T + p T^{2} \)
73 \( 1 - 6 T + p T^{2} \)
79 \( 1 - T + p T^{2} \)
83 \( 1 - 6 T + p T^{2} \)
89 \( 1 - 15 T + p T^{2} \)
97 \( 1 - 9 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.765154230348609914473829791484, −8.162800629217765674167583246921, −7.56669985510585965966341183018, −6.61462902511927818987493434872, −5.44114193130814224462783205875, −4.98904539167326410769878999374, −4.36403452129879769416159437543, −3.38037129798030626259220459654, −1.95733443232044255651478454976, −0.61990195475778641136919885683, 0.61990195475778641136919885683, 1.95733443232044255651478454976, 3.38037129798030626259220459654, 4.36403452129879769416159437543, 4.98904539167326410769878999374, 5.44114193130814224462783205875, 6.61462902511927818987493434872, 7.56669985510585965966341183018, 8.162800629217765674167583246921, 8.765154230348609914473829791484

Graph of the $Z$-function along the critical line