Properties

Label 2535.2.a.f.1.1
Level $2535$
Weight $2$
Character 2535.1
Self dual yes
Analytic conductor $20.242$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2535,2,Mod(1,2535)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2535, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2535.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2535 = 3 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2535.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(20.2420769124\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 195)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 2535.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} -2.00000 q^{4} -1.00000 q^{5} +3.00000 q^{7} +1.00000 q^{9} -3.00000 q^{11} +2.00000 q^{12} +1.00000 q^{15} +4.00000 q^{16} -3.00000 q^{17} +2.00000 q^{20} -3.00000 q^{21} +3.00000 q^{23} +1.00000 q^{25} -1.00000 q^{27} -6.00000 q^{28} -6.00000 q^{29} +6.00000 q^{31} +3.00000 q^{33} -3.00000 q^{35} -2.00000 q^{36} -9.00000 q^{37} -3.00000 q^{41} +10.0000 q^{43} +6.00000 q^{44} -1.00000 q^{45} -12.0000 q^{47} -4.00000 q^{48} +2.00000 q^{49} +3.00000 q^{51} -3.00000 q^{53} +3.00000 q^{55} +12.0000 q^{59} -2.00000 q^{60} +1.00000 q^{61} +3.00000 q^{63} -8.00000 q^{64} +6.00000 q^{68} -3.00000 q^{69} +9.00000 q^{71} +6.00000 q^{73} -1.00000 q^{75} -9.00000 q^{77} +1.00000 q^{79} -4.00000 q^{80} +1.00000 q^{81} +6.00000 q^{83} +6.00000 q^{84} +3.00000 q^{85} +6.00000 q^{87} +15.0000 q^{89} -6.00000 q^{92} -6.00000 q^{93} +9.00000 q^{97} -3.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(3\) −1.00000 −0.577350
\(4\) −2.00000 −1.00000
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 3.00000 1.13389 0.566947 0.823754i \(-0.308125\pi\)
0.566947 + 0.823754i \(0.308125\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −3.00000 −0.904534 −0.452267 0.891883i \(-0.649385\pi\)
−0.452267 + 0.891883i \(0.649385\pi\)
\(12\) 2.00000 0.577350
\(13\) 0 0
\(14\) 0 0
\(15\) 1.00000 0.258199
\(16\) 4.00000 1.00000
\(17\) −3.00000 −0.727607 −0.363803 0.931476i \(-0.618522\pi\)
−0.363803 + 0.931476i \(0.618522\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 2.00000 0.447214
\(21\) −3.00000 −0.654654
\(22\) 0 0
\(23\) 3.00000 0.625543 0.312772 0.949828i \(-0.398743\pi\)
0.312772 + 0.949828i \(0.398743\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) −6.00000 −1.13389
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) 6.00000 1.07763 0.538816 0.842424i \(-0.318872\pi\)
0.538816 + 0.842424i \(0.318872\pi\)
\(32\) 0 0
\(33\) 3.00000 0.522233
\(34\) 0 0
\(35\) −3.00000 −0.507093
\(36\) −2.00000 −0.333333
\(37\) −9.00000 −1.47959 −0.739795 0.672832i \(-0.765078\pi\)
−0.739795 + 0.672832i \(0.765078\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −3.00000 −0.468521 −0.234261 0.972174i \(-0.575267\pi\)
−0.234261 + 0.972174i \(0.575267\pi\)
\(42\) 0 0
\(43\) 10.0000 1.52499 0.762493 0.646997i \(-0.223975\pi\)
0.762493 + 0.646997i \(0.223975\pi\)
\(44\) 6.00000 0.904534
\(45\) −1.00000 −0.149071
\(46\) 0 0
\(47\) −12.0000 −1.75038 −0.875190 0.483779i \(-0.839264\pi\)
−0.875190 + 0.483779i \(0.839264\pi\)
\(48\) −4.00000 −0.577350
\(49\) 2.00000 0.285714
\(50\) 0 0
\(51\) 3.00000 0.420084
\(52\) 0 0
\(53\) −3.00000 −0.412082 −0.206041 0.978543i \(-0.566058\pi\)
−0.206041 + 0.978543i \(0.566058\pi\)
\(54\) 0 0
\(55\) 3.00000 0.404520
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 12.0000 1.56227 0.781133 0.624364i \(-0.214642\pi\)
0.781133 + 0.624364i \(0.214642\pi\)
\(60\) −2.00000 −0.258199
\(61\) 1.00000 0.128037 0.0640184 0.997949i \(-0.479608\pi\)
0.0640184 + 0.997949i \(0.479608\pi\)
\(62\) 0 0
\(63\) 3.00000 0.377964
\(64\) −8.00000 −1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(68\) 6.00000 0.727607
\(69\) −3.00000 −0.361158
\(70\) 0 0
\(71\) 9.00000 1.06810 0.534052 0.845452i \(-0.320669\pi\)
0.534052 + 0.845452i \(0.320669\pi\)
\(72\) 0 0
\(73\) 6.00000 0.702247 0.351123 0.936329i \(-0.385800\pi\)
0.351123 + 0.936329i \(0.385800\pi\)
\(74\) 0 0
\(75\) −1.00000 −0.115470
\(76\) 0 0
\(77\) −9.00000 −1.02565
\(78\) 0 0
\(79\) 1.00000 0.112509 0.0562544 0.998416i \(-0.482084\pi\)
0.0562544 + 0.998416i \(0.482084\pi\)
\(80\) −4.00000 −0.447214
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 6.00000 0.658586 0.329293 0.944228i \(-0.393190\pi\)
0.329293 + 0.944228i \(0.393190\pi\)
\(84\) 6.00000 0.654654
\(85\) 3.00000 0.325396
\(86\) 0 0
\(87\) 6.00000 0.643268
\(88\) 0 0
\(89\) 15.0000 1.59000 0.794998 0.606612i \(-0.207472\pi\)
0.794998 + 0.606612i \(0.207472\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −6.00000 −0.625543
\(93\) −6.00000 −0.622171
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 9.00000 0.913812 0.456906 0.889515i \(-0.348958\pi\)
0.456906 + 0.889515i \(0.348958\pi\)
\(98\) 0 0
\(99\) −3.00000 −0.301511
\(100\) −2.00000 −0.200000
\(101\) −18.0000 −1.79107 −0.895533 0.444994i \(-0.853206\pi\)
−0.895533 + 0.444994i \(0.853206\pi\)
\(102\) 0 0
\(103\) 4.00000 0.394132 0.197066 0.980390i \(-0.436859\pi\)
0.197066 + 0.980390i \(0.436859\pi\)
\(104\) 0 0
\(105\) 3.00000 0.292770
\(106\) 0 0
\(107\) −9.00000 −0.870063 −0.435031 0.900415i \(-0.643263\pi\)
−0.435031 + 0.900415i \(0.643263\pi\)
\(108\) 2.00000 0.192450
\(109\) 18.0000 1.72409 0.862044 0.506834i \(-0.169184\pi\)
0.862044 + 0.506834i \(0.169184\pi\)
\(110\) 0 0
\(111\) 9.00000 0.854242
\(112\) 12.0000 1.13389
\(113\) 18.0000 1.69330 0.846649 0.532152i \(-0.178617\pi\)
0.846649 + 0.532152i \(0.178617\pi\)
\(114\) 0 0
\(115\) −3.00000 −0.279751
\(116\) 12.0000 1.11417
\(117\) 0 0
\(118\) 0 0
\(119\) −9.00000 −0.825029
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) 0 0
\(123\) 3.00000 0.270501
\(124\) −12.0000 −1.07763
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 2.00000 0.177471 0.0887357 0.996055i \(-0.471717\pi\)
0.0887357 + 0.996055i \(0.471717\pi\)
\(128\) 0 0
\(129\) −10.0000 −0.880451
\(130\) 0 0
\(131\) 12.0000 1.04844 0.524222 0.851581i \(-0.324356\pi\)
0.524222 + 0.851581i \(0.324356\pi\)
\(132\) −6.00000 −0.522233
\(133\) 0 0
\(134\) 0 0
\(135\) 1.00000 0.0860663
\(136\) 0 0
\(137\) 18.0000 1.53784 0.768922 0.639343i \(-0.220793\pi\)
0.768922 + 0.639343i \(0.220793\pi\)
\(138\) 0 0
\(139\) −13.0000 −1.10265 −0.551323 0.834292i \(-0.685877\pi\)
−0.551323 + 0.834292i \(0.685877\pi\)
\(140\) 6.00000 0.507093
\(141\) 12.0000 1.01058
\(142\) 0 0
\(143\) 0 0
\(144\) 4.00000 0.333333
\(145\) 6.00000 0.498273
\(146\) 0 0
\(147\) −2.00000 −0.164957
\(148\) 18.0000 1.47959
\(149\) 3.00000 0.245770 0.122885 0.992421i \(-0.460785\pi\)
0.122885 + 0.992421i \(0.460785\pi\)
\(150\) 0 0
\(151\) 6.00000 0.488273 0.244137 0.969741i \(-0.421495\pi\)
0.244137 + 0.969741i \(0.421495\pi\)
\(152\) 0 0
\(153\) −3.00000 −0.242536
\(154\) 0 0
\(155\) −6.00000 −0.481932
\(156\) 0 0
\(157\) −4.00000 −0.319235 −0.159617 0.987179i \(-0.551026\pi\)
−0.159617 + 0.987179i \(0.551026\pi\)
\(158\) 0 0
\(159\) 3.00000 0.237915
\(160\) 0 0
\(161\) 9.00000 0.709299
\(162\) 0 0
\(163\) 3.00000 0.234978 0.117489 0.993074i \(-0.462515\pi\)
0.117489 + 0.993074i \(0.462515\pi\)
\(164\) 6.00000 0.468521
\(165\) −3.00000 −0.233550
\(166\) 0 0
\(167\) 12.0000 0.928588 0.464294 0.885681i \(-0.346308\pi\)
0.464294 + 0.885681i \(0.346308\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 0 0
\(172\) −20.0000 −1.52499
\(173\) 6.00000 0.456172 0.228086 0.973641i \(-0.426753\pi\)
0.228086 + 0.973641i \(0.426753\pi\)
\(174\) 0 0
\(175\) 3.00000 0.226779
\(176\) −12.0000 −0.904534
\(177\) −12.0000 −0.901975
\(178\) 0 0
\(179\) 24.0000 1.79384 0.896922 0.442189i \(-0.145798\pi\)
0.896922 + 0.442189i \(0.145798\pi\)
\(180\) 2.00000 0.149071
\(181\) 25.0000 1.85824 0.929118 0.369784i \(-0.120568\pi\)
0.929118 + 0.369784i \(0.120568\pi\)
\(182\) 0 0
\(183\) −1.00000 −0.0739221
\(184\) 0 0
\(185\) 9.00000 0.661693
\(186\) 0 0
\(187\) 9.00000 0.658145
\(188\) 24.0000 1.75038
\(189\) −3.00000 −0.218218
\(190\) 0 0
\(191\) −12.0000 −0.868290 −0.434145 0.900843i \(-0.642949\pi\)
−0.434145 + 0.900843i \(0.642949\pi\)
\(192\) 8.00000 0.577350
\(193\) 3.00000 0.215945 0.107972 0.994154i \(-0.465564\pi\)
0.107972 + 0.994154i \(0.465564\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −4.00000 −0.285714
\(197\) 6.00000 0.427482 0.213741 0.976890i \(-0.431435\pi\)
0.213741 + 0.976890i \(0.431435\pi\)
\(198\) 0 0
\(199\) −16.0000 −1.13421 −0.567105 0.823646i \(-0.691937\pi\)
−0.567105 + 0.823646i \(0.691937\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −18.0000 −1.26335
\(204\) −6.00000 −0.420084
\(205\) 3.00000 0.209529
\(206\) 0 0
\(207\) 3.00000 0.208514
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) 6.00000 0.412082
\(213\) −9.00000 −0.616670
\(214\) 0 0
\(215\) −10.0000 −0.681994
\(216\) 0 0
\(217\) 18.0000 1.22192
\(218\) 0 0
\(219\) −6.00000 −0.405442
\(220\) −6.00000 −0.404520
\(221\) 0 0
\(222\) 0 0
\(223\) 24.0000 1.60716 0.803579 0.595198i \(-0.202926\pi\)
0.803579 + 0.595198i \(0.202926\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 6.00000 0.396491 0.198246 0.980152i \(-0.436476\pi\)
0.198246 + 0.980152i \(0.436476\pi\)
\(230\) 0 0
\(231\) 9.00000 0.592157
\(232\) 0 0
\(233\) 15.0000 0.982683 0.491341 0.870967i \(-0.336507\pi\)
0.491341 + 0.870967i \(0.336507\pi\)
\(234\) 0 0
\(235\) 12.0000 0.782794
\(236\) −24.0000 −1.56227
\(237\) −1.00000 −0.0649570
\(238\) 0 0
\(239\) −27.0000 −1.74648 −0.873242 0.487286i \(-0.837987\pi\)
−0.873242 + 0.487286i \(0.837987\pi\)
\(240\) 4.00000 0.258199
\(241\) 30.0000 1.93247 0.966235 0.257663i \(-0.0829523\pi\)
0.966235 + 0.257663i \(0.0829523\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) −2.00000 −0.128037
\(245\) −2.00000 −0.127775
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −6.00000 −0.380235
\(250\) 0 0
\(251\) 6.00000 0.378717 0.189358 0.981908i \(-0.439359\pi\)
0.189358 + 0.981908i \(0.439359\pi\)
\(252\) −6.00000 −0.377964
\(253\) −9.00000 −0.565825
\(254\) 0 0
\(255\) −3.00000 −0.187867
\(256\) 16.0000 1.00000
\(257\) −18.0000 −1.12281 −0.561405 0.827541i \(-0.689739\pi\)
−0.561405 + 0.827541i \(0.689739\pi\)
\(258\) 0 0
\(259\) −27.0000 −1.67770
\(260\) 0 0
\(261\) −6.00000 −0.371391
\(262\) 0 0
\(263\) 24.0000 1.47990 0.739952 0.672660i \(-0.234848\pi\)
0.739952 + 0.672660i \(0.234848\pi\)
\(264\) 0 0
\(265\) 3.00000 0.184289
\(266\) 0 0
\(267\) −15.0000 −0.917985
\(268\) 0 0
\(269\) −24.0000 −1.46331 −0.731653 0.681677i \(-0.761251\pi\)
−0.731653 + 0.681677i \(0.761251\pi\)
\(270\) 0 0
\(271\) 6.00000 0.364474 0.182237 0.983255i \(-0.441666\pi\)
0.182237 + 0.983255i \(0.441666\pi\)
\(272\) −12.0000 −0.727607
\(273\) 0 0
\(274\) 0 0
\(275\) −3.00000 −0.180907
\(276\) 6.00000 0.361158
\(277\) −8.00000 −0.480673 −0.240337 0.970690i \(-0.577258\pi\)
−0.240337 + 0.970690i \(0.577258\pi\)
\(278\) 0 0
\(279\) 6.00000 0.359211
\(280\) 0 0
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) 0 0
\(283\) −22.0000 −1.30776 −0.653882 0.756596i \(-0.726861\pi\)
−0.653882 + 0.756596i \(0.726861\pi\)
\(284\) −18.0000 −1.06810
\(285\) 0 0
\(286\) 0 0
\(287\) −9.00000 −0.531253
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) 0 0
\(291\) −9.00000 −0.527589
\(292\) −12.0000 −0.702247
\(293\) 6.00000 0.350524 0.175262 0.984522i \(-0.443923\pi\)
0.175262 + 0.984522i \(0.443923\pi\)
\(294\) 0 0
\(295\) −12.0000 −0.698667
\(296\) 0 0
\(297\) 3.00000 0.174078
\(298\) 0 0
\(299\) 0 0
\(300\) 2.00000 0.115470
\(301\) 30.0000 1.72917
\(302\) 0 0
\(303\) 18.0000 1.03407
\(304\) 0 0
\(305\) −1.00000 −0.0572598
\(306\) 0 0
\(307\) 15.0000 0.856095 0.428048 0.903756i \(-0.359202\pi\)
0.428048 + 0.903756i \(0.359202\pi\)
\(308\) 18.0000 1.02565
\(309\) −4.00000 −0.227552
\(310\) 0 0
\(311\) 6.00000 0.340229 0.170114 0.985424i \(-0.445586\pi\)
0.170114 + 0.985424i \(0.445586\pi\)
\(312\) 0 0
\(313\) −8.00000 −0.452187 −0.226093 0.974106i \(-0.572595\pi\)
−0.226093 + 0.974106i \(0.572595\pi\)
\(314\) 0 0
\(315\) −3.00000 −0.169031
\(316\) −2.00000 −0.112509
\(317\) 6.00000 0.336994 0.168497 0.985702i \(-0.446109\pi\)
0.168497 + 0.985702i \(0.446109\pi\)
\(318\) 0 0
\(319\) 18.0000 1.00781
\(320\) 8.00000 0.447214
\(321\) 9.00000 0.502331
\(322\) 0 0
\(323\) 0 0
\(324\) −2.00000 −0.111111
\(325\) 0 0
\(326\) 0 0
\(327\) −18.0000 −0.995402
\(328\) 0 0
\(329\) −36.0000 −1.98474
\(330\) 0 0
\(331\) −24.0000 −1.31916 −0.659580 0.751635i \(-0.729266\pi\)
−0.659580 + 0.751635i \(0.729266\pi\)
\(332\) −12.0000 −0.658586
\(333\) −9.00000 −0.493197
\(334\) 0 0
\(335\) 0 0
\(336\) −12.0000 −0.654654
\(337\) 14.0000 0.762629 0.381314 0.924445i \(-0.375472\pi\)
0.381314 + 0.924445i \(0.375472\pi\)
\(338\) 0 0
\(339\) −18.0000 −0.977626
\(340\) −6.00000 −0.325396
\(341\) −18.0000 −0.974755
\(342\) 0 0
\(343\) −15.0000 −0.809924
\(344\) 0 0
\(345\) 3.00000 0.161515
\(346\) 0 0
\(347\) −9.00000 −0.483145 −0.241573 0.970383i \(-0.577663\pi\)
−0.241573 + 0.970383i \(0.577663\pi\)
\(348\) −12.0000 −0.643268
\(349\) −18.0000 −0.963518 −0.481759 0.876304i \(-0.660002\pi\)
−0.481759 + 0.876304i \(0.660002\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) −9.00000 −0.477670
\(356\) −30.0000 −1.59000
\(357\) 9.00000 0.476331
\(358\) 0 0
\(359\) −24.0000 −1.26667 −0.633336 0.773877i \(-0.718315\pi\)
−0.633336 + 0.773877i \(0.718315\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) 2.00000 0.104973
\(364\) 0 0
\(365\) −6.00000 −0.314054
\(366\) 0 0
\(367\) 26.0000 1.35719 0.678594 0.734513i \(-0.262589\pi\)
0.678594 + 0.734513i \(0.262589\pi\)
\(368\) 12.0000 0.625543
\(369\) −3.00000 −0.156174
\(370\) 0 0
\(371\) −9.00000 −0.467257
\(372\) 12.0000 0.622171
\(373\) 4.00000 0.207112 0.103556 0.994624i \(-0.466978\pi\)
0.103556 + 0.994624i \(0.466978\pi\)
\(374\) 0 0
\(375\) 1.00000 0.0516398
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 30.0000 1.54100 0.770498 0.637442i \(-0.220007\pi\)
0.770498 + 0.637442i \(0.220007\pi\)
\(380\) 0 0
\(381\) −2.00000 −0.102463
\(382\) 0 0
\(383\) −30.0000 −1.53293 −0.766464 0.642287i \(-0.777986\pi\)
−0.766464 + 0.642287i \(0.777986\pi\)
\(384\) 0 0
\(385\) 9.00000 0.458682
\(386\) 0 0
\(387\) 10.0000 0.508329
\(388\) −18.0000 −0.913812
\(389\) −30.0000 −1.52106 −0.760530 0.649303i \(-0.775061\pi\)
−0.760530 + 0.649303i \(0.775061\pi\)
\(390\) 0 0
\(391\) −9.00000 −0.455150
\(392\) 0 0
\(393\) −12.0000 −0.605320
\(394\) 0 0
\(395\) −1.00000 −0.0503155
\(396\) 6.00000 0.301511
\(397\) 3.00000 0.150566 0.0752828 0.997162i \(-0.476014\pi\)
0.0752828 + 0.997162i \(0.476014\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 4.00000 0.200000
\(401\) −18.0000 −0.898877 −0.449439 0.893311i \(-0.648376\pi\)
−0.449439 + 0.893311i \(0.648376\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 36.0000 1.79107
\(405\) −1.00000 −0.0496904
\(406\) 0 0
\(407\) 27.0000 1.33834
\(408\) 0 0
\(409\) −24.0000 −1.18672 −0.593362 0.804936i \(-0.702200\pi\)
−0.593362 + 0.804936i \(0.702200\pi\)
\(410\) 0 0
\(411\) −18.0000 −0.887875
\(412\) −8.00000 −0.394132
\(413\) 36.0000 1.77144
\(414\) 0 0
\(415\) −6.00000 −0.294528
\(416\) 0 0
\(417\) 13.0000 0.636613
\(418\) 0 0
\(419\) −18.0000 −0.879358 −0.439679 0.898155i \(-0.644908\pi\)
−0.439679 + 0.898155i \(0.644908\pi\)
\(420\) −6.00000 −0.292770
\(421\) 18.0000 0.877266 0.438633 0.898666i \(-0.355463\pi\)
0.438633 + 0.898666i \(0.355463\pi\)
\(422\) 0 0
\(423\) −12.0000 −0.583460
\(424\) 0 0
\(425\) −3.00000 −0.145521
\(426\) 0 0
\(427\) 3.00000 0.145180
\(428\) 18.0000 0.870063
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) −4.00000 −0.192450
\(433\) 38.0000 1.82616 0.913082 0.407777i \(-0.133696\pi\)
0.913082 + 0.407777i \(0.133696\pi\)
\(434\) 0 0
\(435\) −6.00000 −0.287678
\(436\) −36.0000 −1.72409
\(437\) 0 0
\(438\) 0 0
\(439\) 19.0000 0.906821 0.453410 0.891302i \(-0.350207\pi\)
0.453410 + 0.891302i \(0.350207\pi\)
\(440\) 0 0
\(441\) 2.00000 0.0952381
\(442\) 0 0
\(443\) −21.0000 −0.997740 −0.498870 0.866677i \(-0.666252\pi\)
−0.498870 + 0.866677i \(0.666252\pi\)
\(444\) −18.0000 −0.854242
\(445\) −15.0000 −0.711068
\(446\) 0 0
\(447\) −3.00000 −0.141895
\(448\) −24.0000 −1.13389
\(449\) −15.0000 −0.707894 −0.353947 0.935266i \(-0.615161\pi\)
−0.353947 + 0.935266i \(0.615161\pi\)
\(450\) 0 0
\(451\) 9.00000 0.423793
\(452\) −36.0000 −1.69330
\(453\) −6.00000 −0.281905
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 33.0000 1.54367 0.771837 0.635820i \(-0.219338\pi\)
0.771837 + 0.635820i \(0.219338\pi\)
\(458\) 0 0
\(459\) 3.00000 0.140028
\(460\) 6.00000 0.279751
\(461\) 9.00000 0.419172 0.209586 0.977790i \(-0.432788\pi\)
0.209586 + 0.977790i \(0.432788\pi\)
\(462\) 0 0
\(463\) 15.0000 0.697109 0.348555 0.937288i \(-0.386673\pi\)
0.348555 + 0.937288i \(0.386673\pi\)
\(464\) −24.0000 −1.11417
\(465\) 6.00000 0.278243
\(466\) 0 0
\(467\) 15.0000 0.694117 0.347059 0.937843i \(-0.387180\pi\)
0.347059 + 0.937843i \(0.387180\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 4.00000 0.184310
\(472\) 0 0
\(473\) −30.0000 −1.37940
\(474\) 0 0
\(475\) 0 0
\(476\) 18.0000 0.825029
\(477\) −3.00000 −0.137361
\(478\) 0 0
\(479\) 3.00000 0.137073 0.0685367 0.997649i \(-0.478167\pi\)
0.0685367 + 0.997649i \(0.478167\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) −9.00000 −0.409514
\(484\) 4.00000 0.181818
\(485\) −9.00000 −0.408669
\(486\) 0 0
\(487\) −15.0000 −0.679715 −0.339857 0.940477i \(-0.610379\pi\)
−0.339857 + 0.940477i \(0.610379\pi\)
\(488\) 0 0
\(489\) −3.00000 −0.135665
\(490\) 0 0
\(491\) −12.0000 −0.541552 −0.270776 0.962642i \(-0.587280\pi\)
−0.270776 + 0.962642i \(0.587280\pi\)
\(492\) −6.00000 −0.270501
\(493\) 18.0000 0.810679
\(494\) 0 0
\(495\) 3.00000 0.134840
\(496\) 24.0000 1.07763
\(497\) 27.0000 1.21112
\(498\) 0 0
\(499\) −24.0000 −1.07439 −0.537194 0.843459i \(-0.680516\pi\)
−0.537194 + 0.843459i \(0.680516\pi\)
\(500\) 2.00000 0.0894427
\(501\) −12.0000 −0.536120
\(502\) 0 0
\(503\) 36.0000 1.60516 0.802580 0.596544i \(-0.203460\pi\)
0.802580 + 0.596544i \(0.203460\pi\)
\(504\) 0 0
\(505\) 18.0000 0.800989
\(506\) 0 0
\(507\) 0 0
\(508\) −4.00000 −0.177471
\(509\) 15.0000 0.664863 0.332432 0.943127i \(-0.392131\pi\)
0.332432 + 0.943127i \(0.392131\pi\)
\(510\) 0 0
\(511\) 18.0000 0.796273
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −4.00000 −0.176261
\(516\) 20.0000 0.880451
\(517\) 36.0000 1.58328
\(518\) 0 0
\(519\) −6.00000 −0.263371
\(520\) 0 0
\(521\) 12.0000 0.525730 0.262865 0.964833i \(-0.415333\pi\)
0.262865 + 0.964833i \(0.415333\pi\)
\(522\) 0 0
\(523\) 2.00000 0.0874539 0.0437269 0.999044i \(-0.486077\pi\)
0.0437269 + 0.999044i \(0.486077\pi\)
\(524\) −24.0000 −1.04844
\(525\) −3.00000 −0.130931
\(526\) 0 0
\(527\) −18.0000 −0.784092
\(528\) 12.0000 0.522233
\(529\) −14.0000 −0.608696
\(530\) 0 0
\(531\) 12.0000 0.520756
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 9.00000 0.389104
\(536\) 0 0
\(537\) −24.0000 −1.03568
\(538\) 0 0
\(539\) −6.00000 −0.258438
\(540\) −2.00000 −0.0860663
\(541\) 12.0000 0.515920 0.257960 0.966156i \(-0.416950\pi\)
0.257960 + 0.966156i \(0.416950\pi\)
\(542\) 0 0
\(543\) −25.0000 −1.07285
\(544\) 0 0
\(545\) −18.0000 −0.771035
\(546\) 0 0
\(547\) 26.0000 1.11168 0.555840 0.831289i \(-0.312397\pi\)
0.555840 + 0.831289i \(0.312397\pi\)
\(548\) −36.0000 −1.53784
\(549\) 1.00000 0.0426790
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 3.00000 0.127573
\(554\) 0 0
\(555\) −9.00000 −0.382029
\(556\) 26.0000 1.10265
\(557\) 30.0000 1.27114 0.635570 0.772043i \(-0.280765\pi\)
0.635570 + 0.772043i \(0.280765\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) −12.0000 −0.507093
\(561\) −9.00000 −0.379980
\(562\) 0 0
\(563\) −9.00000 −0.379305 −0.189652 0.981851i \(-0.560736\pi\)
−0.189652 + 0.981851i \(0.560736\pi\)
\(564\) −24.0000 −1.01058
\(565\) −18.0000 −0.757266
\(566\) 0 0
\(567\) 3.00000 0.125988
\(568\) 0 0
\(569\) 30.0000 1.25767 0.628833 0.777541i \(-0.283533\pi\)
0.628833 + 0.777541i \(0.283533\pi\)
\(570\) 0 0
\(571\) −31.0000 −1.29731 −0.648655 0.761083i \(-0.724668\pi\)
−0.648655 + 0.761083i \(0.724668\pi\)
\(572\) 0 0
\(573\) 12.0000 0.501307
\(574\) 0 0
\(575\) 3.00000 0.125109
\(576\) −8.00000 −0.333333
\(577\) 21.0000 0.874241 0.437121 0.899403i \(-0.355998\pi\)
0.437121 + 0.899403i \(0.355998\pi\)
\(578\) 0 0
\(579\) −3.00000 −0.124676
\(580\) −12.0000 −0.498273
\(581\) 18.0000 0.746766
\(582\) 0 0
\(583\) 9.00000 0.372742
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −18.0000 −0.742940 −0.371470 0.928445i \(-0.621146\pi\)
−0.371470 + 0.928445i \(0.621146\pi\)
\(588\) 4.00000 0.164957
\(589\) 0 0
\(590\) 0 0
\(591\) −6.00000 −0.246807
\(592\) −36.0000 −1.47959
\(593\) 42.0000 1.72473 0.862367 0.506284i \(-0.168981\pi\)
0.862367 + 0.506284i \(0.168981\pi\)
\(594\) 0 0
\(595\) 9.00000 0.368964
\(596\) −6.00000 −0.245770
\(597\) 16.0000 0.654836
\(598\) 0 0
\(599\) 48.0000 1.96123 0.980613 0.195952i \(-0.0627798\pi\)
0.980613 + 0.195952i \(0.0627798\pi\)
\(600\) 0 0
\(601\) −17.0000 −0.693444 −0.346722 0.937968i \(-0.612705\pi\)
−0.346722 + 0.937968i \(0.612705\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −12.0000 −0.488273
\(605\) 2.00000 0.0813116
\(606\) 0 0
\(607\) −4.00000 −0.162355 −0.0811775 0.996700i \(-0.525868\pi\)
−0.0811775 + 0.996700i \(0.525868\pi\)
\(608\) 0 0
\(609\) 18.0000 0.729397
\(610\) 0 0
\(611\) 0 0
\(612\) 6.00000 0.242536
\(613\) 21.0000 0.848182 0.424091 0.905620i \(-0.360594\pi\)
0.424091 + 0.905620i \(0.360594\pi\)
\(614\) 0 0
\(615\) −3.00000 −0.120972
\(616\) 0 0
\(617\) −18.0000 −0.724653 −0.362326 0.932051i \(-0.618017\pi\)
−0.362326 + 0.932051i \(0.618017\pi\)
\(618\) 0 0
\(619\) 30.0000 1.20580 0.602901 0.797816i \(-0.294011\pi\)
0.602901 + 0.797816i \(0.294011\pi\)
\(620\) 12.0000 0.481932
\(621\) −3.00000 −0.120386
\(622\) 0 0
\(623\) 45.0000 1.80289
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 8.00000 0.319235
\(629\) 27.0000 1.07656
\(630\) 0 0
\(631\) 6.00000 0.238856 0.119428 0.992843i \(-0.461894\pi\)
0.119428 + 0.992843i \(0.461894\pi\)
\(632\) 0 0
\(633\) −4.00000 −0.158986
\(634\) 0 0
\(635\) −2.00000 −0.0793676
\(636\) −6.00000 −0.237915
\(637\) 0 0
\(638\) 0 0
\(639\) 9.00000 0.356034
\(640\) 0 0
\(641\) 24.0000 0.947943 0.473972 0.880540i \(-0.342820\pi\)
0.473972 + 0.880540i \(0.342820\pi\)
\(642\) 0 0
\(643\) 27.0000 1.06478 0.532388 0.846500i \(-0.321295\pi\)
0.532388 + 0.846500i \(0.321295\pi\)
\(644\) −18.0000 −0.709299
\(645\) 10.0000 0.393750
\(646\) 0 0
\(647\) −39.0000 −1.53325 −0.766624 0.642096i \(-0.778065\pi\)
−0.766624 + 0.642096i \(0.778065\pi\)
\(648\) 0 0
\(649\) −36.0000 −1.41312
\(650\) 0 0
\(651\) −18.0000 −0.705476
\(652\) −6.00000 −0.234978
\(653\) −18.0000 −0.704394 −0.352197 0.935926i \(-0.614565\pi\)
−0.352197 + 0.935926i \(0.614565\pi\)
\(654\) 0 0
\(655\) −12.0000 −0.468879
\(656\) −12.0000 −0.468521
\(657\) 6.00000 0.234082
\(658\) 0 0
\(659\) −6.00000 −0.233727 −0.116863 0.993148i \(-0.537284\pi\)
−0.116863 + 0.993148i \(0.537284\pi\)
\(660\) 6.00000 0.233550
\(661\) −24.0000 −0.933492 −0.466746 0.884391i \(-0.654574\pi\)
−0.466746 + 0.884391i \(0.654574\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −18.0000 −0.696963
\(668\) −24.0000 −0.928588
\(669\) −24.0000 −0.927894
\(670\) 0 0
\(671\) −3.00000 −0.115814
\(672\) 0 0
\(673\) −44.0000 −1.69608 −0.848038 0.529936i \(-0.822216\pi\)
−0.848038 + 0.529936i \(0.822216\pi\)
\(674\) 0 0
\(675\) −1.00000 −0.0384900
\(676\) 0 0
\(677\) −39.0000 −1.49889 −0.749446 0.662066i \(-0.769680\pi\)
−0.749446 + 0.662066i \(0.769680\pi\)
\(678\) 0 0
\(679\) 27.0000 1.03616
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −30.0000 −1.14792 −0.573959 0.818884i \(-0.694593\pi\)
−0.573959 + 0.818884i \(0.694593\pi\)
\(684\) 0 0
\(685\) −18.0000 −0.687745
\(686\) 0 0
\(687\) −6.00000 −0.228914
\(688\) 40.0000 1.52499
\(689\) 0 0
\(690\) 0 0
\(691\) −30.0000 −1.14125 −0.570627 0.821209i \(-0.693300\pi\)
−0.570627 + 0.821209i \(0.693300\pi\)
\(692\) −12.0000 −0.456172
\(693\) −9.00000 −0.341882
\(694\) 0 0
\(695\) 13.0000 0.493118
\(696\) 0 0
\(697\) 9.00000 0.340899
\(698\) 0 0
\(699\) −15.0000 −0.567352
\(700\) −6.00000 −0.226779
\(701\) −12.0000 −0.453234 −0.226617 0.973984i \(-0.572767\pi\)
−0.226617 + 0.973984i \(0.572767\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 24.0000 0.904534
\(705\) −12.0000 −0.451946
\(706\) 0 0
\(707\) −54.0000 −2.03088
\(708\) 24.0000 0.901975
\(709\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(710\) 0 0
\(711\) 1.00000 0.0375029
\(712\) 0 0
\(713\) 18.0000 0.674105
\(714\) 0 0
\(715\) 0 0
\(716\) −48.0000 −1.79384
\(717\) 27.0000 1.00833
\(718\) 0 0
\(719\) −30.0000 −1.11881 −0.559406 0.828894i \(-0.688971\pi\)
−0.559406 + 0.828894i \(0.688971\pi\)
\(720\) −4.00000 −0.149071
\(721\) 12.0000 0.446903
\(722\) 0 0
\(723\) −30.0000 −1.11571
\(724\) −50.0000 −1.85824
\(725\) −6.00000 −0.222834
\(726\) 0 0
\(727\) 26.0000 0.964287 0.482143 0.876092i \(-0.339858\pi\)
0.482143 + 0.876092i \(0.339858\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −30.0000 −1.10959
\(732\) 2.00000 0.0739221
\(733\) 15.0000 0.554038 0.277019 0.960864i \(-0.410654\pi\)
0.277019 + 0.960864i \(0.410654\pi\)
\(734\) 0 0
\(735\) 2.00000 0.0737711
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 30.0000 1.10357 0.551784 0.833987i \(-0.313947\pi\)
0.551784 + 0.833987i \(0.313947\pi\)
\(740\) −18.0000 −0.661693
\(741\) 0 0
\(742\) 0 0
\(743\) 36.0000 1.32071 0.660356 0.750953i \(-0.270405\pi\)
0.660356 + 0.750953i \(0.270405\pi\)
\(744\) 0 0
\(745\) −3.00000 −0.109911
\(746\) 0 0
\(747\) 6.00000 0.219529
\(748\) −18.0000 −0.658145
\(749\) −27.0000 −0.986559
\(750\) 0 0
\(751\) −5.00000 −0.182453 −0.0912263 0.995830i \(-0.529079\pi\)
−0.0912263 + 0.995830i \(0.529079\pi\)
\(752\) −48.0000 −1.75038
\(753\) −6.00000 −0.218652
\(754\) 0 0
\(755\) −6.00000 −0.218362
\(756\) 6.00000 0.218218
\(757\) 16.0000 0.581530 0.290765 0.956795i \(-0.406090\pi\)
0.290765 + 0.956795i \(0.406090\pi\)
\(758\) 0 0
\(759\) 9.00000 0.326679
\(760\) 0 0
\(761\) −18.0000 −0.652499 −0.326250 0.945284i \(-0.605785\pi\)
−0.326250 + 0.945284i \(0.605785\pi\)
\(762\) 0 0
\(763\) 54.0000 1.95493
\(764\) 24.0000 0.868290
\(765\) 3.00000 0.108465
\(766\) 0 0
\(767\) 0 0
\(768\) −16.0000 −0.577350
\(769\) 12.0000 0.432731 0.216366 0.976312i \(-0.430580\pi\)
0.216366 + 0.976312i \(0.430580\pi\)
\(770\) 0 0
\(771\) 18.0000 0.648254
\(772\) −6.00000 −0.215945
\(773\) −18.0000 −0.647415 −0.323708 0.946157i \(-0.604929\pi\)
−0.323708 + 0.946157i \(0.604929\pi\)
\(774\) 0 0
\(775\) 6.00000 0.215526
\(776\) 0 0
\(777\) 27.0000 0.968620
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −27.0000 −0.966136
\(782\) 0 0
\(783\) 6.00000 0.214423
\(784\) 8.00000 0.285714
\(785\) 4.00000 0.142766
\(786\) 0 0
\(787\) 12.0000 0.427754 0.213877 0.976861i \(-0.431391\pi\)
0.213877 + 0.976861i \(0.431391\pi\)
\(788\) −12.0000 −0.427482
\(789\) −24.0000 −0.854423
\(790\) 0 0
\(791\) 54.0000 1.92002
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −3.00000 −0.106399
\(796\) 32.0000 1.13421
\(797\) 51.0000 1.80651 0.903256 0.429101i \(-0.141170\pi\)
0.903256 + 0.429101i \(0.141170\pi\)
\(798\) 0 0
\(799\) 36.0000 1.27359
\(800\) 0 0
\(801\) 15.0000 0.529999
\(802\) 0 0
\(803\) −18.0000 −0.635206
\(804\) 0 0
\(805\) −9.00000 −0.317208
\(806\) 0 0
\(807\) 24.0000 0.844840
\(808\) 0 0
\(809\) 24.0000 0.843795 0.421898 0.906644i \(-0.361364\pi\)
0.421898 + 0.906644i \(0.361364\pi\)
\(810\) 0 0
\(811\) −42.0000 −1.47482 −0.737410 0.675446i \(-0.763951\pi\)
−0.737410 + 0.675446i \(0.763951\pi\)
\(812\) 36.0000 1.26335
\(813\) −6.00000 −0.210429
\(814\) 0 0
\(815\) −3.00000 −0.105085
\(816\) 12.0000 0.420084
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) −6.00000 −0.209529
\(821\) 33.0000 1.15171 0.575854 0.817553i \(-0.304670\pi\)
0.575854 + 0.817553i \(0.304670\pi\)
\(822\) 0 0
\(823\) −14.0000 −0.488009 −0.244005 0.969774i \(-0.578461\pi\)
−0.244005 + 0.969774i \(0.578461\pi\)
\(824\) 0 0
\(825\) 3.00000 0.104447
\(826\) 0 0
\(827\) 12.0000 0.417281 0.208640 0.977992i \(-0.433096\pi\)
0.208640 + 0.977992i \(0.433096\pi\)
\(828\) −6.00000 −0.208514
\(829\) 2.00000 0.0694629 0.0347314 0.999397i \(-0.488942\pi\)
0.0347314 + 0.999397i \(0.488942\pi\)
\(830\) 0 0
\(831\) 8.00000 0.277517
\(832\) 0 0
\(833\) −6.00000 −0.207888
\(834\) 0 0
\(835\) −12.0000 −0.415277
\(836\) 0 0
\(837\) −6.00000 −0.207390
\(838\) 0 0
\(839\) 9.00000 0.310715 0.155357 0.987858i \(-0.450347\pi\)
0.155357 + 0.987858i \(0.450347\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 0 0
\(843\) 6.00000 0.206651
\(844\) −8.00000 −0.275371
\(845\) 0 0
\(846\) 0 0
\(847\) −6.00000 −0.206162
\(848\) −12.0000 −0.412082
\(849\) 22.0000 0.755038
\(850\) 0 0
\(851\) −27.0000 −0.925548
\(852\) 18.0000 0.616670
\(853\) 9.00000 0.308154 0.154077 0.988059i \(-0.450760\pi\)
0.154077 + 0.988059i \(0.450760\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −21.0000 −0.717346 −0.358673 0.933463i \(-0.616771\pi\)
−0.358673 + 0.933463i \(0.616771\pi\)
\(858\) 0 0
\(859\) −5.00000 −0.170598 −0.0852989 0.996355i \(-0.527185\pi\)
−0.0852989 + 0.996355i \(0.527185\pi\)
\(860\) 20.0000 0.681994
\(861\) 9.00000 0.306719
\(862\) 0 0
\(863\) 30.0000 1.02121 0.510606 0.859815i \(-0.329421\pi\)
0.510606 + 0.859815i \(0.329421\pi\)
\(864\) 0 0
\(865\) −6.00000 −0.204006
\(866\) 0 0
\(867\) 8.00000 0.271694
\(868\) −36.0000 −1.22192
\(869\) −3.00000 −0.101768
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 9.00000 0.304604
\(874\) 0 0
\(875\) −3.00000 −0.101419
\(876\) 12.0000 0.405442
\(877\) −30.0000 −1.01303 −0.506514 0.862232i \(-0.669066\pi\)
−0.506514 + 0.862232i \(0.669066\pi\)
\(878\) 0 0
\(879\) −6.00000 −0.202375
\(880\) 12.0000 0.404520
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) −16.0000 −0.538443 −0.269221 0.963078i \(-0.586766\pi\)
−0.269221 + 0.963078i \(0.586766\pi\)
\(884\) 0 0
\(885\) 12.0000 0.403376
\(886\) 0 0
\(887\) 33.0000 1.10803 0.554016 0.832506i \(-0.313095\pi\)
0.554016 + 0.832506i \(0.313095\pi\)
\(888\) 0 0
\(889\) 6.00000 0.201234
\(890\) 0 0
\(891\) −3.00000 −0.100504
\(892\) −48.0000 −1.60716
\(893\) 0 0
\(894\) 0 0
\(895\) −24.0000 −0.802232
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −36.0000 −1.20067
\(900\) −2.00000 −0.0666667
\(901\) 9.00000 0.299833
\(902\) 0 0
\(903\) −30.0000 −0.998337
\(904\) 0 0
\(905\) −25.0000 −0.831028
\(906\) 0 0
\(907\) 8.00000 0.265636 0.132818 0.991140i \(-0.457597\pi\)
0.132818 + 0.991140i \(0.457597\pi\)
\(908\) 0 0
\(909\) −18.0000 −0.597022
\(910\) 0 0
\(911\) 18.0000 0.596367 0.298183 0.954509i \(-0.403619\pi\)
0.298183 + 0.954509i \(0.403619\pi\)
\(912\) 0 0
\(913\) −18.0000 −0.595713
\(914\) 0 0
\(915\) 1.00000 0.0330590
\(916\) −12.0000 −0.396491
\(917\) 36.0000 1.18882
\(918\) 0 0
\(919\) −11.0000 −0.362857 −0.181428 0.983404i \(-0.558072\pi\)
−0.181428 + 0.983404i \(0.558072\pi\)
\(920\) 0 0
\(921\) −15.0000 −0.494267
\(922\) 0 0
\(923\) 0 0
\(924\) −18.0000 −0.592157
\(925\) −9.00000 −0.295918
\(926\) 0 0
\(927\) 4.00000 0.131377
\(928\) 0 0
\(929\) 27.0000 0.885841 0.442921 0.896561i \(-0.353942\pi\)
0.442921 + 0.896561i \(0.353942\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −30.0000 −0.982683
\(933\) −6.00000 −0.196431
\(934\) 0 0
\(935\) −9.00000 −0.294331
\(936\) 0 0
\(937\) 34.0000 1.11073 0.555366 0.831606i \(-0.312578\pi\)
0.555366 + 0.831606i \(0.312578\pi\)
\(938\) 0 0
\(939\) 8.00000 0.261070
\(940\) −24.0000 −0.782794
\(941\) −9.00000 −0.293392 −0.146696 0.989182i \(-0.546864\pi\)
−0.146696 + 0.989182i \(0.546864\pi\)
\(942\) 0 0
\(943\) −9.00000 −0.293080
\(944\) 48.0000 1.56227
\(945\) 3.00000 0.0975900
\(946\) 0 0
\(947\) −24.0000 −0.779895 −0.389948 0.920837i \(-0.627507\pi\)
−0.389948 + 0.920837i \(0.627507\pi\)
\(948\) 2.00000 0.0649570
\(949\) 0 0
\(950\) 0 0
\(951\) −6.00000 −0.194563
\(952\) 0 0
\(953\) −27.0000 −0.874616 −0.437308 0.899312i \(-0.644068\pi\)
−0.437308 + 0.899312i \(0.644068\pi\)
\(954\) 0 0
\(955\) 12.0000 0.388311
\(956\) 54.0000 1.74648
\(957\) −18.0000 −0.581857
\(958\) 0 0
\(959\) 54.0000 1.74375
\(960\) −8.00000 −0.258199
\(961\) 5.00000 0.161290
\(962\) 0 0
\(963\) −9.00000 −0.290021
\(964\) −60.0000 −1.93247
\(965\) −3.00000 −0.0965734
\(966\) 0 0
\(967\) −48.0000 −1.54358 −0.771788 0.635880i \(-0.780637\pi\)
−0.771788 + 0.635880i \(0.780637\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −18.0000 −0.577647 −0.288824 0.957382i \(-0.593264\pi\)
−0.288824 + 0.957382i \(0.593264\pi\)
\(972\) 2.00000 0.0641500
\(973\) −39.0000 −1.25028
\(974\) 0 0
\(975\) 0 0
\(976\) 4.00000 0.128037
\(977\) 24.0000 0.767828 0.383914 0.923369i \(-0.374576\pi\)
0.383914 + 0.923369i \(0.374576\pi\)
\(978\) 0 0
\(979\) −45.0000 −1.43821
\(980\) 4.00000 0.127775
\(981\) 18.0000 0.574696
\(982\) 0 0
\(983\) −36.0000 −1.14822 −0.574111 0.818778i \(-0.694652\pi\)
−0.574111 + 0.818778i \(0.694652\pi\)
\(984\) 0 0
\(985\) −6.00000 −0.191176
\(986\) 0 0
\(987\) 36.0000 1.14589
\(988\) 0 0
\(989\) 30.0000 0.953945
\(990\) 0 0
\(991\) −25.0000 −0.794151 −0.397076 0.917786i \(-0.629975\pi\)
−0.397076 + 0.917786i \(0.629975\pi\)
\(992\) 0 0
\(993\) 24.0000 0.761617
\(994\) 0 0
\(995\) 16.0000 0.507234
\(996\) 12.0000 0.380235
\(997\) 8.00000 0.253363 0.126681 0.991943i \(-0.459567\pi\)
0.126681 + 0.991943i \(0.459567\pi\)
\(998\) 0 0
\(999\) 9.00000 0.284747
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2535.2.a.f.1.1 1
3.2 odd 2 7605.2.a.n.1.1 1
13.5 odd 4 195.2.b.a.181.2 yes 2
13.8 odd 4 195.2.b.a.181.1 2
13.12 even 2 2535.2.a.g.1.1 1
39.5 even 4 585.2.b.d.181.1 2
39.8 even 4 585.2.b.d.181.2 2
39.38 odd 2 7605.2.a.i.1.1 1
52.31 even 4 3120.2.g.j.961.2 2
52.47 even 4 3120.2.g.j.961.1 2
65.8 even 4 975.2.h.b.649.1 2
65.18 even 4 975.2.h.c.649.1 2
65.34 odd 4 975.2.b.e.376.2 2
65.44 odd 4 975.2.b.e.376.1 2
65.47 even 4 975.2.h.c.649.2 2
65.57 even 4 975.2.h.b.649.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.b.a.181.1 2 13.8 odd 4
195.2.b.a.181.2 yes 2 13.5 odd 4
585.2.b.d.181.1 2 39.5 even 4
585.2.b.d.181.2 2 39.8 even 4
975.2.b.e.376.1 2 65.44 odd 4
975.2.b.e.376.2 2 65.34 odd 4
975.2.h.b.649.1 2 65.8 even 4
975.2.h.b.649.2 2 65.57 even 4
975.2.h.c.649.1 2 65.18 even 4
975.2.h.c.649.2 2 65.47 even 4
2535.2.a.f.1.1 1 1.1 even 1 trivial
2535.2.a.g.1.1 1 13.12 even 2
3120.2.g.j.961.1 2 52.47 even 4
3120.2.g.j.961.2 2 52.31 even 4
7605.2.a.i.1.1 1 39.38 odd 2
7605.2.a.n.1.1 1 3.2 odd 2