Properties

Label 2535.2
Level 2535
Weight 2
Dimension 153084
Nonzero newspaces 40
Sturm bound 908544
Trace bound 6

Downloads

Learn more

Defining parameters

Level: N N = 2535=35132 2535 = 3 \cdot 5 \cdot 13^{2}
Weight: k k = 2 2
Nonzero newspaces: 40 40
Sturm bound: 908544908544
Trace bound: 66

Dimensions

The following table gives the dimensions of various subspaces of M2(Γ1(2535))M_{2}(\Gamma_1(2535)).

Total New Old
Modular forms 230784 155540 75244
Cusp forms 223489 153084 70405
Eisenstein series 7295 2456 4839

Trace form

153084q4q2134q3272q4398q6256q7+60q8124q9340q10+32q1134q12240q13+72q14176q15664q16+56q1740q18++164q99+O(q100) 153084 q - 4 q^{2} - 134 q^{3} - 272 q^{4} - 398 q^{6} - 256 q^{7} + 60 q^{8} - 124 q^{9} - 340 q^{10} + 32 q^{11} - 34 q^{12} - 240 q^{13} + 72 q^{14} - 176 q^{15} - 664 q^{16} + 56 q^{17} - 40 q^{18}+ \cdots + 164 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(Γ1(2535))S_{2}^{\mathrm{new}}(\Gamma_1(2535))

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
2535.2.a χ2535(1,)\chi_{2535}(1, \cdot) 2535.2.a.a 1 1
2535.2.a.b 1
2535.2.a.c 1
2535.2.a.d 1
2535.2.a.e 1
2535.2.a.f 1
2535.2.a.g 1
2535.2.a.h 1
2535.2.a.i 1
2535.2.a.j 1
2535.2.a.k 1
2535.2.a.l 1
2535.2.a.m 1
2535.2.a.n 2
2535.2.a.o 2
2535.2.a.p 2
2535.2.a.q 2
2535.2.a.r 2
2535.2.a.s 2
2535.2.a.t 3
2535.2.a.u 3
2535.2.a.v 3
2535.2.a.w 3
2535.2.a.x 3
2535.2.a.y 3
2535.2.a.z 3
2535.2.a.ba 3
2535.2.a.bb 3
2535.2.a.bc 3
2535.2.a.bd 3
2535.2.a.be 3
2535.2.a.bf 3
2535.2.a.bg 3
2535.2.a.bh 3
2535.2.a.bi 4
2535.2.a.bj 4
2535.2.a.bk 4
2535.2.a.bl 4
2535.2.a.bm 9
2535.2.a.bn 9
2535.2.b χ2535(1351,)\chi_{2535}(1351, \cdot) n/a 104 1
2535.2.c χ2535(2029,)\chi_{2535}(2029, \cdot) n/a 156 1
2535.2.h χ2535(844,)\chi_{2535}(844, \cdot) n/a 152 1
2535.2.i χ2535(991,)\chi_{2535}(991, \cdot) n/a 204 2
2535.2.k χ2535(1282,)\chi_{2535}(1282, \cdot) n/a 308 2
2535.2.m χ2535(677,)\chi_{2535}(677, \cdot) n/a 576 2
2535.2.n χ2535(239,)\chi_{2535}(239, \cdot) n/a 576 2
2535.2.o χ2535(746,)\chi_{2535}(746, \cdot) n/a 408 2
2535.2.s χ2535(1013,)\chi_{2535}(1013, \cdot) n/a 576 2
2535.2.t χ2535(268,)\chi_{2535}(268, \cdot) n/a 308 2
2535.2.v χ2535(2344,)\chi_{2535}(2344, \cdot) n/a 304 2
2535.2.ba χ2535(484,)\chi_{2535}(484, \cdot) n/a 312 2
2535.2.bb χ2535(316,)\chi_{2535}(316, \cdot) n/a 204 2
2535.2.bd χ2535(1333,)\chi_{2535}(1333, \cdot) n/a 616 4
2535.2.bf χ2535(23,)\chi_{2535}(23, \cdot) n/a 1152 4
2535.2.bg χ2535(596,)\chi_{2535}(596, \cdot) n/a 824 4
2535.2.bh χ2535(89,)\chi_{2535}(89, \cdot) n/a 1152 4
2535.2.bl χ2535(653,)\chi_{2535}(653, \cdot) n/a 1152 4
2535.2.bm χ2535(418,)\chi_{2535}(418, \cdot) n/a 616 4
2535.2.bo χ2535(196,)\chi_{2535}(196, \cdot) n/a 1440 12
2535.2.bp χ2535(64,)\chi_{2535}(64, \cdot) n/a 2208 12
2535.2.bu χ2535(79,)\chi_{2535}(79, \cdot) n/a 2160 12
2535.2.bv χ2535(181,)\chi_{2535}(181, \cdot) n/a 1440 12
2535.2.bw χ2535(16,)\chi_{2535}(16, \cdot) n/a 2928 24
2535.2.by χ2535(73,)\chi_{2535}(73, \cdot) n/a 4368 24
2535.2.bz χ2535(38,)\chi_{2535}(38, \cdot) n/a 8640 24
2535.2.cd χ2535(86,)\chi_{2535}(86, \cdot) n/a 5856 24
2535.2.ce χ2535(44,)\chi_{2535}(44, \cdot) n/a 8640 24
2535.2.cf χ2535(53,)\chi_{2535}(53, \cdot) n/a 8640 24
2535.2.ch χ2535(112,)\chi_{2535}(112, \cdot) n/a 4368 24
2535.2.cj χ2535(121,)\chi_{2535}(121, \cdot) n/a 2928 24
2535.2.ck χ2535(94,)\chi_{2535}(94, \cdot) n/a 4320 24
2535.2.cp χ2535(4,)\chi_{2535}(4, \cdot) n/a 4416 24
2535.2.cr χ2535(7,)\chi_{2535}(7, \cdot) n/a 8736 48
2535.2.cs χ2535(68,)\chi_{2535}(68, \cdot) n/a 17280 48
2535.2.cw χ2535(59,)\chi_{2535}(59, \cdot) n/a 17280 48
2535.2.cx χ2535(11,)\chi_{2535}(11, \cdot) n/a 11616 48
2535.2.cy χ2535(17,)\chi_{2535}(17, \cdot) n/a 17280 48
2535.2.da χ2535(67,)\chi_{2535}(67, \cdot) n/a 8736 48

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of S2old(Γ1(2535))S_{2}^{\mathrm{old}}(\Gamma_1(2535)) into lower level spaces