from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2535, base_ring=CyclotomicField(78))
M = H._module
chi = DirichletCharacter(H, M([0,0,2]))
chi.galois_orbit()
[g,chi] = znchar(Mod(16,2535))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Basic properties
Modulus: | \(2535\) | |
Conductor: | \(169\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(39\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from 169.i | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Related number fields
Field of values: | $\Q(\zeta_{39})$ |
Fixed field: | Number field defined by a degree 39 polynomial |
Characters in Galois orbit
Character | \(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(11\) | \(14\) | \(16\) | \(17\) | \(19\) | \(22\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{2535}(16,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{1}{39}\right)\) | \(e\left(\frac{2}{39}\right)\) | \(e\left(\frac{29}{39}\right)\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{25}{39}\right)\) | \(e\left(\frac{10}{13}\right)\) | \(e\left(\frac{4}{39}\right)\) | \(e\left(\frac{29}{39}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{2535}(61,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{35}{39}\right)\) | \(e\left(\frac{31}{39}\right)\) | \(e\left(\frac{1}{39}\right)\) | \(e\left(\frac{9}{13}\right)\) | \(e\left(\frac{17}{39}\right)\) | \(e\left(\frac{12}{13}\right)\) | \(e\left(\frac{23}{39}\right)\) | \(e\left(\frac{1}{39}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{2535}(211,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{19}{39}\right)\) | \(e\left(\frac{38}{39}\right)\) | \(e\left(\frac{5}{39}\right)\) | \(e\left(\frac{6}{13}\right)\) | \(e\left(\frac{7}{39}\right)\) | \(e\left(\frac{8}{13}\right)\) | \(e\left(\frac{37}{39}\right)\) | \(e\left(\frac{5}{39}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{2535}(256,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{2}{39}\right)\) | \(e\left(\frac{4}{39}\right)\) | \(e\left(\frac{19}{39}\right)\) | \(e\left(\frac{2}{13}\right)\) | \(e\left(\frac{11}{39}\right)\) | \(e\left(\frac{7}{13}\right)\) | \(e\left(\frac{8}{39}\right)\) | \(e\left(\frac{19}{39}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{2535}(406,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{37}{39}\right)\) | \(e\left(\frac{35}{39}\right)\) | \(e\left(\frac{20}{39}\right)\) | \(e\left(\frac{11}{13}\right)\) | \(e\left(\frac{28}{39}\right)\) | \(e\left(\frac{6}{13}\right)\) | \(e\left(\frac{31}{39}\right)\) | \(e\left(\frac{20}{39}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{2535}(451,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{8}{39}\right)\) | \(e\left(\frac{16}{39}\right)\) | \(e\left(\frac{37}{39}\right)\) | \(e\left(\frac{8}{13}\right)\) | \(e\left(\frac{5}{39}\right)\) | \(e\left(\frac{2}{13}\right)\) | \(e\left(\frac{32}{39}\right)\) | \(e\left(\frac{37}{39}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{2535}(601,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{16}{39}\right)\) | \(e\left(\frac{32}{39}\right)\) | \(e\left(\frac{35}{39}\right)\) | \(e\left(\frac{3}{13}\right)\) | \(e\left(\frac{10}{39}\right)\) | \(e\left(\frac{4}{13}\right)\) | \(e\left(\frac{25}{39}\right)\) | \(e\left(\frac{35}{39}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{2535}(646,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{14}{39}\right)\) | \(e\left(\frac{28}{39}\right)\) | \(e\left(\frac{16}{39}\right)\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{38}{39}\right)\) | \(e\left(\frac{10}{13}\right)\) | \(e\left(\frac{17}{39}\right)\) | \(e\left(\frac{16}{39}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{2535}(796,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{34}{39}\right)\) | \(e\left(\frac{29}{39}\right)\) | \(e\left(\frac{11}{39}\right)\) | \(e\left(\frac{8}{13}\right)\) | \(e\left(\frac{31}{39}\right)\) | \(e\left(\frac{2}{13}\right)\) | \(e\left(\frac{19}{39}\right)\) | \(e\left(\frac{11}{39}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{2535}(841,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{20}{39}\right)\) | \(e\left(\frac{1}{39}\right)\) | \(e\left(\frac{34}{39}\right)\) | \(e\left(\frac{7}{13}\right)\) | \(e\left(\frac{32}{39}\right)\) | \(e\left(\frac{5}{13}\right)\) | \(e\left(\frac{2}{39}\right)\) | \(e\left(\frac{34}{39}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{2535}(1186,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{31}{39}\right)\) | \(e\left(\frac{23}{39}\right)\) | \(e\left(\frac{2}{39}\right)\) | \(e\left(\frac{5}{13}\right)\) | \(e\left(\frac{34}{39}\right)\) | \(e\left(\frac{11}{13}\right)\) | \(e\left(\frac{7}{39}\right)\) | \(e\left(\frac{2}{39}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{2535}(1231,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{32}{39}\right)\) | \(e\left(\frac{25}{39}\right)\) | \(e\left(\frac{31}{39}\right)\) | \(e\left(\frac{6}{13}\right)\) | \(e\left(\frac{20}{39}\right)\) | \(e\left(\frac{8}{13}\right)\) | \(e\left(\frac{11}{39}\right)\) | \(e\left(\frac{31}{39}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{2535}(1381,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{10}{39}\right)\) | \(e\left(\frac{20}{39}\right)\) | \(e\left(\frac{17}{39}\right)\) | \(e\left(\frac{10}{13}\right)\) | \(e\left(\frac{16}{39}\right)\) | \(e\left(\frac{9}{13}\right)\) | \(e\left(\frac{1}{39}\right)\) | \(e\left(\frac{17}{39}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{2535}(1426,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{38}{39}\right)\) | \(e\left(\frac{37}{39}\right)\) | \(e\left(\frac{10}{39}\right)\) | \(e\left(\frac{12}{13}\right)\) | \(e\left(\frac{14}{39}\right)\) | \(e\left(\frac{3}{13}\right)\) | \(e\left(\frac{35}{39}\right)\) | \(e\left(\frac{10}{39}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{2535}(1576,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{28}{39}\right)\) | \(e\left(\frac{17}{39}\right)\) | \(e\left(\frac{32}{39}\right)\) | \(e\left(\frac{2}{13}\right)\) | \(e\left(\frac{37}{39}\right)\) | \(e\left(\frac{7}{13}\right)\) | \(e\left(\frac{34}{39}\right)\) | \(e\left(\frac{32}{39}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{2535}(1621,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{5}{39}\right)\) | \(e\left(\frac{10}{39}\right)\) | \(e\left(\frac{28}{39}\right)\) | \(e\left(\frac{5}{13}\right)\) | \(e\left(\frac{8}{39}\right)\) | \(e\left(\frac{11}{13}\right)\) | \(e\left(\frac{20}{39}\right)\) | \(e\left(\frac{28}{39}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{2535}(1771,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{7}{39}\right)\) | \(e\left(\frac{14}{39}\right)\) | \(e\left(\frac{8}{39}\right)\) | \(e\left(\frac{7}{13}\right)\) | \(e\left(\frac{19}{39}\right)\) | \(e\left(\frac{5}{13}\right)\) | \(e\left(\frac{28}{39}\right)\) | \(e\left(\frac{8}{39}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{2535}(1816,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{11}{39}\right)\) | \(e\left(\frac{22}{39}\right)\) | \(e\left(\frac{7}{39}\right)\) | \(e\left(\frac{11}{13}\right)\) | \(e\left(\frac{2}{39}\right)\) | \(e\left(\frac{6}{13}\right)\) | \(e\left(\frac{5}{39}\right)\) | \(e\left(\frac{7}{39}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{2535}(1966,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{25}{39}\right)\) | \(e\left(\frac{11}{39}\right)\) | \(e\left(\frac{23}{39}\right)\) | \(e\left(\frac{12}{13}\right)\) | \(e\left(\frac{1}{39}\right)\) | \(e\left(\frac{3}{13}\right)\) | \(e\left(\frac{22}{39}\right)\) | \(e\left(\frac{23}{39}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{2535}(2011,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{17}{39}\right)\) | \(e\left(\frac{34}{39}\right)\) | \(e\left(\frac{25}{39}\right)\) | \(e\left(\frac{4}{13}\right)\) | \(e\left(\frac{35}{39}\right)\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{29}{39}\right)\) | \(e\left(\frac{25}{39}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{2535}(2161,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{4}{39}\right)\) | \(e\left(\frac{8}{39}\right)\) | \(e\left(\frac{38}{39}\right)\) | \(e\left(\frac{4}{13}\right)\) | \(e\left(\frac{22}{39}\right)\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{16}{39}\right)\) | \(e\left(\frac{38}{39}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{2535}(2206,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{23}{39}\right)\) | \(e\left(\frac{7}{39}\right)\) | \(e\left(\frac{4}{39}\right)\) | \(e\left(\frac{10}{13}\right)\) | \(e\left(\frac{29}{39}\right)\) | \(e\left(\frac{9}{13}\right)\) | \(e\left(\frac{14}{39}\right)\) | \(e\left(\frac{4}{39}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{2535}(2356,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{22}{39}\right)\) | \(e\left(\frac{5}{39}\right)\) | \(e\left(\frac{14}{39}\right)\) | \(e\left(\frac{9}{13}\right)\) | \(e\left(\frac{4}{39}\right)\) | \(e\left(\frac{12}{13}\right)\) | \(e\left(\frac{10}{39}\right)\) | \(e\left(\frac{14}{39}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{2535}(2401,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{29}{39}\right)\) | \(e\left(\frac{19}{39}\right)\) | \(e\left(\frac{22}{39}\right)\) | \(e\left(\frac{3}{13}\right)\) | \(e\left(\frac{23}{39}\right)\) | \(e\left(\frac{4}{13}\right)\) | \(e\left(\frac{38}{39}\right)\) | \(e\left(\frac{22}{39}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) |