Properties

Label 2535.1381
Modulus $2535$
Conductor $169$
Order $39$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2535, base_ring=CyclotomicField(78))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,20]))
 
pari: [g,chi] = znchar(Mod(1381,2535))
 

Basic properties

Modulus: \(2535\)
Conductor: \(169\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(39\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{169}(29,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2535.bw

\(\chi_{2535}(16,\cdot)\) \(\chi_{2535}(61,\cdot)\) \(\chi_{2535}(211,\cdot)\) \(\chi_{2535}(256,\cdot)\) \(\chi_{2535}(406,\cdot)\) \(\chi_{2535}(451,\cdot)\) \(\chi_{2535}(601,\cdot)\) \(\chi_{2535}(646,\cdot)\) \(\chi_{2535}(796,\cdot)\) \(\chi_{2535}(841,\cdot)\) \(\chi_{2535}(1186,\cdot)\) \(\chi_{2535}(1231,\cdot)\) \(\chi_{2535}(1381,\cdot)\) \(\chi_{2535}(1426,\cdot)\) \(\chi_{2535}(1576,\cdot)\) \(\chi_{2535}(1621,\cdot)\) \(\chi_{2535}(1771,\cdot)\) \(\chi_{2535}(1816,\cdot)\) \(\chi_{2535}(1966,\cdot)\) \(\chi_{2535}(2011,\cdot)\) \(\chi_{2535}(2161,\cdot)\) \(\chi_{2535}(2206,\cdot)\) \(\chi_{2535}(2356,\cdot)\) \(\chi_{2535}(2401,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{39})$
Fixed field: Number field defined by a degree 39 polynomial

Values on generators

\((1691,1522,1861)\) → \((1,1,e\left(\frac{10}{39}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(11\)\(14\)\(16\)\(17\)\(19\)\(22\)
\( \chi_{ 2535 }(1381, a) \) \(1\)\(1\)\(e\left(\frac{10}{39}\right)\)\(e\left(\frac{20}{39}\right)\)\(e\left(\frac{17}{39}\right)\)\(e\left(\frac{10}{13}\right)\)\(e\left(\frac{16}{39}\right)\)\(e\left(\frac{9}{13}\right)\)\(e\left(\frac{1}{39}\right)\)\(e\left(\frac{17}{39}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{2}{3}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2535 }(1381,a) \;\) at \(\;a = \) e.g. 2