Properties

Label 2-2535-1.1-c1-0-88
Degree $2$
Conductor $2535$
Sign $-1$
Analytic cond. $20.2420$
Root an. cond. $4.49911$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.80·2-s + 3-s + 1.24·4-s − 5-s − 1.80·6-s + 2.80·7-s + 1.35·8-s + 9-s + 1.80·10-s + 3.49·11-s + 1.24·12-s − 5.04·14-s − 15-s − 4.93·16-s − 7.60·17-s − 1.80·18-s + 1.75·19-s − 1.24·20-s + 2.80·21-s − 6.29·22-s − 6.44·23-s + 1.35·24-s + 25-s + 27-s + 3.49·28-s − 9.74·29-s + 1.80·30-s + ⋯
L(s)  = 1  − 1.27·2-s + 0.577·3-s + 0.623·4-s − 0.447·5-s − 0.735·6-s + 1.05·7-s + 0.479·8-s + 0.333·9-s + 0.569·10-s + 1.05·11-s + 0.359·12-s − 1.34·14-s − 0.258·15-s − 1.23·16-s − 1.84·17-s − 0.424·18-s + 0.402·19-s − 0.278·20-s + 0.611·21-s − 1.34·22-s − 1.34·23-s + 0.276·24-s + 0.200·25-s + 0.192·27-s + 0.660·28-s − 1.80·29-s + 0.328·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2535 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2535 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2535\)    =    \(3 \cdot 5 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(20.2420\)
Root analytic conductor: \(4.49911\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2535,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
5 \( 1 + T \)
13 \( 1 \)
good2 \( 1 + 1.80T + 2T^{2} \)
7 \( 1 - 2.80T + 7T^{2} \)
11 \( 1 - 3.49T + 11T^{2} \)
17 \( 1 + 7.60T + 17T^{2} \)
19 \( 1 - 1.75T + 19T^{2} \)
23 \( 1 + 6.44T + 23T^{2} \)
29 \( 1 + 9.74T + 29T^{2} \)
31 \( 1 + 9.59T + 31T^{2} \)
37 \( 1 + 6.85T + 37T^{2} \)
41 \( 1 + 1.19T + 41T^{2} \)
43 \( 1 - 4.00T + 43T^{2} \)
47 \( 1 + 2.97T + 47T^{2} \)
53 \( 1 - 4.51T + 53T^{2} \)
59 \( 1 + 7.18T + 59T^{2} \)
61 \( 1 - 4.43T + 61T^{2} \)
67 \( 1 + 2.45T + 67T^{2} \)
71 \( 1 - 13.5T + 71T^{2} \)
73 \( 1 - 1.75T + 73T^{2} \)
79 \( 1 - 4.85T + 79T^{2} \)
83 \( 1 + 12.0T + 83T^{2} \)
89 \( 1 + 4.12T + 89T^{2} \)
97 \( 1 - 2.32T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.619073142407194497215766797107, −7.953581274842170924514234964575, −7.31434219702273036526518342219, −6.67082930258912340249350863303, −5.34662675583794823025150126557, −4.28413405190741872460227047411, −3.78978090977089315611512289330, −2.08541921595419328049380585429, −1.59779431297846226125231121597, 0, 1.59779431297846226125231121597, 2.08541921595419328049380585429, 3.78978090977089315611512289330, 4.28413405190741872460227047411, 5.34662675583794823025150126557, 6.67082930258912340249350863303, 7.31434219702273036526518342219, 7.953581274842170924514234964575, 8.619073142407194497215766797107

Graph of the $Z$-function along the critical line