Properties

Label 2535.2.a.w
Level $2535$
Weight $2$
Character orbit 2535.a
Self dual yes
Analytic conductor $20.242$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2535,2,Mod(1,2535)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2535, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2535.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2535 = 3 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2535.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(20.2420769124\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + q^{3} + \beta_{2} q^{4} - q^{5} - \beta_1 q^{6} + (\beta_1 + 1) q^{7} + ( - \beta_{2} + 2 \beta_1 - 1) q^{8} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - \beta_1 q^{2} + q^{3} + \beta_{2} q^{4} - q^{5} - \beta_1 q^{6} + (\beta_1 + 1) q^{7} + ( - \beta_{2} + 2 \beta_1 - 1) q^{8} + q^{9} + \beta_1 q^{10} + (2 \beta_{2} + 1) q^{11} + \beta_{2} q^{12} + ( - \beta_{2} - \beta_1 - 2) q^{14} - q^{15} + ( - 3 \beta_{2} + \beta_1 - 3) q^{16} + ( - 2 \beta_1 - 4) q^{17} - \beta_1 q^{18} + ( - \beta_{2} + 3) q^{19} - \beta_{2} q^{20} + (\beta_1 + 1) q^{21} + ( - 2 \beta_{2} - \beta_1 - 2) q^{22} + ( - \beta_{2} + \beta_1 - 7) q^{23} + ( - \beta_{2} + 2 \beta_1 - 1) q^{24} + q^{25} + q^{27} + (2 \beta_{2} + 1) q^{28} + ( - 3 \beta_{2} - 6) q^{29} + \beta_1 q^{30} + ( - 4 \beta_{2} - 2 \beta_1 - 1) q^{31} + (4 \beta_{2} - \beta_1 + 3) q^{32} + (2 \beta_{2} + 1) q^{33} + (2 \beta_{2} + 4 \beta_1 + 4) q^{34} + ( - \beta_1 - 1) q^{35} + \beta_{2} q^{36} + ( - \beta_{2} - 2 \beta_1 - 2) q^{37} + (\beta_{2} - 3 \beta_1 + 1) q^{38} + (\beta_{2} - 2 \beta_1 + 1) q^{40} + (\beta_1 - 3) q^{41} + ( - \beta_{2} - \beta_1 - 2) q^{42} + (5 \beta_1 - 5) q^{43} + ( - \beta_{2} + 2 \beta_1 + 2) q^{44} - q^{45} + (7 \beta_1 - 1) q^{46} + ( - 4 \beta_{2} + 5 \beta_1 - 7) q^{47} + ( - 3 \beta_{2} + \beta_1 - 3) q^{48} + (\beta_{2} + 2 \beta_1 - 4) q^{49} - \beta_1 q^{50} + ( - 2 \beta_1 - 4) q^{51} + ( - 2 \beta_{2} + 5 \beta_1 - 2) q^{53} - \beta_1 q^{54} + ( - 2 \beta_{2} - 1) q^{55} + (\beta_1 + 2) q^{56} + ( - \beta_{2} + 3) q^{57} + (3 \beta_{2} + 6 \beta_1 + 3) q^{58} + ( - 4 \beta_{2} + \beta_1 - 4) q^{59} - \beta_{2} q^{60} + (5 \beta_{2} - \beta_1) q^{61} + (6 \beta_{2} + \beta_1 + 8) q^{62} + (\beta_1 + 1) q^{63} + (3 \beta_{2} - 5 \beta_1 + 4) q^{64} + ( - 2 \beta_{2} - \beta_1 - 2) q^{66} + (3 \beta_{2} + \beta_1 - 8) q^{67} + ( - 6 \beta_{2} - 2) q^{68} + ( - \beta_{2} + \beta_1 - 7) q^{69} + (\beta_{2} + \beta_1 + 2) q^{70} + (11 \beta_{2} - 4 \beta_1 + 7) q^{71} + ( - \beta_{2} + 2 \beta_1 - 1) q^{72} + ( - \beta_{2} + 3) q^{73} + (3 \beta_{2} + 2 \beta_1 + 5) q^{74} + q^{75} + (4 \beta_{2} - \beta_1 - 1) q^{76} + (4 \beta_{2} + \beta_1 + 3) q^{77} + (10 \beta_{2} - 7 \beta_1 + 5) q^{79} + (3 \beta_{2} - \beta_1 + 3) q^{80} + q^{81} + ( - \beta_{2} + 3 \beta_1 - 2) q^{82} + ( - \beta_{2} - 6 \beta_1) q^{83} + (2 \beta_{2} + 1) q^{84} + (2 \beta_1 + 4) q^{85} + ( - 5 \beta_{2} + 5 \beta_1 - 10) q^{86} + ( - 3 \beta_{2} - 6) q^{87} + (3 \beta_{2} + 1) q^{88} + ( - 7 \beta_{2} + 2 \beta_1 + 1) q^{89} + \beta_1 q^{90} + ( - 5 \beta_{2} - \beta_1) q^{92} + ( - 4 \beta_{2} - 2 \beta_1 - 1) q^{93} + ( - \beta_{2} + 7 \beta_1 - 6) q^{94} + (\beta_{2} - 3) q^{95} + (4 \beta_{2} - \beta_1 + 3) q^{96} + ( - 6 \beta_{2} + 6 \beta_1 - 1) q^{97} + ( - 3 \beta_{2} + 4 \beta_1 - 5) q^{98} + (2 \beta_{2} + 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{2} + 3 q^{3} - q^{4} - 3 q^{5} - q^{6} + 4 q^{7} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q - q^{2} + 3 q^{3} - q^{4} - 3 q^{5} - q^{6} + 4 q^{7} + 3 q^{9} + q^{10} + q^{11} - q^{12} - 6 q^{14} - 3 q^{15} - 5 q^{16} - 14 q^{17} - q^{18} + 10 q^{19} + q^{20} + 4 q^{21} - 5 q^{22} - 19 q^{23} + 3 q^{25} + 3 q^{27} + q^{28} - 15 q^{29} + q^{30} - q^{31} + 4 q^{32} + q^{33} + 14 q^{34} - 4 q^{35} - q^{36} - 7 q^{37} - q^{38} - 8 q^{41} - 6 q^{42} - 10 q^{43} + 9 q^{44} - 3 q^{45} + 4 q^{46} - 12 q^{47} - 5 q^{48} - 11 q^{49} - q^{50} - 14 q^{51} + q^{53} - q^{54} - q^{55} + 7 q^{56} + 10 q^{57} + 12 q^{58} - 7 q^{59} + q^{60} - 6 q^{61} + 19 q^{62} + 4 q^{63} + 4 q^{64} - 5 q^{66} - 26 q^{67} - 19 q^{69} + 6 q^{70} + 6 q^{71} + 10 q^{73} + 14 q^{74} + 3 q^{75} - 8 q^{76} + 6 q^{77} - 2 q^{79} + 5 q^{80} + 3 q^{81} - 2 q^{82} - 5 q^{83} + q^{84} + 14 q^{85} - 20 q^{86} - 15 q^{87} + 12 q^{89} + q^{90} + 4 q^{92} - q^{93} - 10 q^{94} - 10 q^{95} + 4 q^{96} + 9 q^{97} - 8 q^{98} + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{14} + \zeta_{14}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.80194
0.445042
−1.24698
−1.80194 1.00000 1.24698 −1.00000 −1.80194 2.80194 1.35690 1.00000 1.80194
1.2 −0.445042 1.00000 −1.80194 −1.00000 −0.445042 1.44504 1.69202 1.00000 0.445042
1.3 1.24698 1.00000 −0.445042 −1.00000 1.24698 −0.246980 −3.04892 1.00000 −1.24698
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( +1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2535.2.a.w 3
3.b odd 2 1 7605.2.a.cb 3
13.b even 2 1 2535.2.a.bf yes 3
39.d odd 2 1 7605.2.a.bo 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2535.2.a.w 3 1.a even 1 1 trivial
2535.2.a.bf yes 3 13.b even 2 1
7605.2.a.bo 3 39.d odd 2 1
7605.2.a.cb 3 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2535))\):

\( T_{2}^{3} + T_{2}^{2} - 2T_{2} - 1 \) Copy content Toggle raw display
\( T_{7}^{3} - 4T_{7}^{2} + 3T_{7} + 1 \) Copy content Toggle raw display
\( T_{11}^{3} - T_{11}^{2} - 9T_{11} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} + T^{2} - 2T - 1 \) Copy content Toggle raw display
$3$ \( (T - 1)^{3} \) Copy content Toggle raw display
$5$ \( (T + 1)^{3} \) Copy content Toggle raw display
$7$ \( T^{3} - 4 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( T^{3} - T^{2} - 9T + 1 \) Copy content Toggle raw display
$13$ \( T^{3} \) Copy content Toggle raw display
$17$ \( T^{3} + 14 T^{2} + \cdots + 56 \) Copy content Toggle raw display
$19$ \( T^{3} - 10 T^{2} + \cdots - 29 \) Copy content Toggle raw display
$23$ \( T^{3} + 19 T^{2} + \cdots + 239 \) Copy content Toggle raw display
$29$ \( T^{3} + 15 T^{2} + \cdots + 27 \) Copy content Toggle raw display
$31$ \( T^{3} + T^{2} + \cdots + 167 \) Copy content Toggle raw display
$37$ \( T^{3} + 7T^{2} - 7 \) Copy content Toggle raw display
$41$ \( T^{3} + 8 T^{2} + \cdots + 13 \) Copy content Toggle raw display
$43$ \( T^{3} + 10 T^{2} + \cdots - 125 \) Copy content Toggle raw display
$47$ \( T^{3} + 12 T^{2} + \cdots - 83 \) Copy content Toggle raw display
$53$ \( T^{3} - T^{2} + \cdots + 127 \) Copy content Toggle raw display
$59$ \( T^{3} + 7 T^{2} + \cdots - 91 \) Copy content Toggle raw display
$61$ \( T^{3} + 6 T^{2} + \cdots - 41 \) Copy content Toggle raw display
$67$ \( T^{3} + 26 T^{2} + \cdots + 337 \) Copy content Toggle raw display
$71$ \( T^{3} - 6 T^{2} + \cdots + 1399 \) Copy content Toggle raw display
$73$ \( T^{3} - 10 T^{2} + \cdots - 29 \) Copy content Toggle raw display
$79$ \( T^{3} + 2 T^{2} + \cdots + 727 \) Copy content Toggle raw display
$83$ \( T^{3} + 5 T^{2} + \cdots - 83 \) Copy content Toggle raw display
$89$ \( T^{3} - 12 T^{2} + \cdots + 97 \) Copy content Toggle raw display
$97$ \( T^{3} - 9 T^{2} + \cdots + 169 \) Copy content Toggle raw display
show more
show less