Properties

Label 2535.2.a.w
Level 25352535
Weight 22
Character orbit 2535.a
Self dual yes
Analytic conductor 20.24220.242
Analytic rank 11
Dimension 33
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2535,2,Mod(1,2535)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2535, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2535.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 2535=35132 2535 = 3 \cdot 5 \cdot 13^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2535.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 20.242076912420.2420769124
Analytic rank: 11
Dimension: 33
Coefficient field: Q(ζ14)+\Q(\zeta_{14})^+
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x3x22x+1 x^{3} - x^{2} - 2x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β21,\beta_1,\beta_2 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ1q2+q3+β2q4q5β1q6+(β1+1)q7+(β2+2β11)q8+q9+β1q10+(2β2+1)q11+β2q12++(2β2+1)q99+O(q100) q - \beta_1 q^{2} + q^{3} + \beta_{2} q^{4} - q^{5} - \beta_1 q^{6} + (\beta_1 + 1) q^{7} + ( - \beta_{2} + 2 \beta_1 - 1) q^{8} + q^{9} + \beta_1 q^{10} + (2 \beta_{2} + 1) q^{11} + \beta_{2} q^{12}+ \cdots + (2 \beta_{2} + 1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 3qq2+3q3q43q5q6+4q7+3q9+q10+q11q126q143q155q1614q17q18+10q19+q20+4q215q2219q23++q99+O(q100) 3 q - q^{2} + 3 q^{3} - q^{4} - 3 q^{5} - q^{6} + 4 q^{7} + 3 q^{9} + q^{10} + q^{11} - q^{12} - 6 q^{14} - 3 q^{15} - 5 q^{16} - 14 q^{17} - q^{18} + 10 q^{19} + q^{20} + 4 q^{21} - 5 q^{22} - 19 q^{23}+ \cdots + q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of ν=ζ14+ζ141\nu = \zeta_{14} + \zeta_{14}^{-1}:

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν22 \nu^{2} - 2 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+2 \beta_{2} + 2 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
1.80194
0.445042
−1.24698
−1.80194 1.00000 1.24698 −1.00000 −1.80194 2.80194 1.35690 1.00000 1.80194
1.2 −0.445042 1.00000 −1.80194 −1.00000 −0.445042 1.44504 1.69202 1.00000 0.445042
1.3 1.24698 1.00000 −0.445042 −1.00000 1.24698 −0.246980 −3.04892 1.00000 −1.24698
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 1 -1
55 +1 +1
1313 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2535.2.a.w 3
3.b odd 2 1 7605.2.a.cb 3
13.b even 2 1 2535.2.a.bf yes 3
39.d odd 2 1 7605.2.a.bo 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2535.2.a.w 3 1.a even 1 1 trivial
2535.2.a.bf yes 3 13.b even 2 1
7605.2.a.bo 3 39.d odd 2 1
7605.2.a.cb 3 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(2535))S_{2}^{\mathrm{new}}(\Gamma_0(2535)):

T23+T222T21 T_{2}^{3} + T_{2}^{2} - 2T_{2} - 1 Copy content Toggle raw display
T734T72+3T7+1 T_{7}^{3} - 4T_{7}^{2} + 3T_{7} + 1 Copy content Toggle raw display
T113T1129T11+1 T_{11}^{3} - T_{11}^{2} - 9T_{11} + 1 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T3+T22T1 T^{3} + T^{2} - 2T - 1 Copy content Toggle raw display
33 (T1)3 (T - 1)^{3} Copy content Toggle raw display
55 (T+1)3 (T + 1)^{3} Copy content Toggle raw display
77 T34T2++1 T^{3} - 4 T^{2} + \cdots + 1 Copy content Toggle raw display
1111 T3T29T+1 T^{3} - T^{2} - 9T + 1 Copy content Toggle raw display
1313 T3 T^{3} Copy content Toggle raw display
1717 T3+14T2++56 T^{3} + 14 T^{2} + \cdots + 56 Copy content Toggle raw display
1919 T310T2+29 T^{3} - 10 T^{2} + \cdots - 29 Copy content Toggle raw display
2323 T3+19T2++239 T^{3} + 19 T^{2} + \cdots + 239 Copy content Toggle raw display
2929 T3+15T2++27 T^{3} + 15 T^{2} + \cdots + 27 Copy content Toggle raw display
3131 T3+T2++167 T^{3} + T^{2} + \cdots + 167 Copy content Toggle raw display
3737 T3+7T27 T^{3} + 7T^{2} - 7 Copy content Toggle raw display
4141 T3+8T2++13 T^{3} + 8 T^{2} + \cdots + 13 Copy content Toggle raw display
4343 T3+10T2+125 T^{3} + 10 T^{2} + \cdots - 125 Copy content Toggle raw display
4747 T3+12T2+83 T^{3} + 12 T^{2} + \cdots - 83 Copy content Toggle raw display
5353 T3T2++127 T^{3} - T^{2} + \cdots + 127 Copy content Toggle raw display
5959 T3+7T2+91 T^{3} + 7 T^{2} + \cdots - 91 Copy content Toggle raw display
6161 T3+6T2+41 T^{3} + 6 T^{2} + \cdots - 41 Copy content Toggle raw display
6767 T3+26T2++337 T^{3} + 26 T^{2} + \cdots + 337 Copy content Toggle raw display
7171 T36T2++1399 T^{3} - 6 T^{2} + \cdots + 1399 Copy content Toggle raw display
7373 T310T2+29 T^{3} - 10 T^{2} + \cdots - 29 Copy content Toggle raw display
7979 T3+2T2++727 T^{3} + 2 T^{2} + \cdots + 727 Copy content Toggle raw display
8383 T3+5T2+83 T^{3} + 5 T^{2} + \cdots - 83 Copy content Toggle raw display
8989 T312T2++97 T^{3} - 12 T^{2} + \cdots + 97 Copy content Toggle raw display
9797 T39T2++169 T^{3} - 9 T^{2} + \cdots + 169 Copy content Toggle raw display
show more
show less