L(s) = 1 | − 2.44·3-s − 1.44·5-s + 2.99·9-s + 1.55·11-s + 13-s + 3.55·15-s + 2.44·17-s − 5.44·19-s − 5.89·23-s − 2.89·25-s + 3.89·29-s + 1.44·31-s − 3.79·33-s − 3.55·37-s − 2.44·39-s − 1.10·41-s + 43-s − 4.34·45-s + 1.44·47-s − 5.99·51-s − 7.89·53-s − 2.24·55-s + 13.3·57-s − 14·59-s + 2·61-s − 1.44·65-s + 2.89·67-s + ⋯ |
L(s) = 1 | − 1.41·3-s − 0.648·5-s + 0.999·9-s + 0.467·11-s + 0.277·13-s + 0.916·15-s + 0.594·17-s − 1.25·19-s − 1.23·23-s − 0.579·25-s + 0.724·29-s + 0.260·31-s − 0.661·33-s − 0.583·37-s − 0.392·39-s − 0.171·41-s + 0.152·43-s − 0.648·45-s + 0.211·47-s − 0.840·51-s − 1.08·53-s − 0.303·55-s + 1.76·57-s − 1.82·59-s + 0.256·61-s − 0.179·65-s + 0.354·67-s + ⋯ |
Λ(s)=(=(2548s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(2548s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.6659744622 |
L(21) |
≈ |
0.6659744622 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1 |
| 13 | 1−T |
good | 3 | 1+2.44T+3T2 |
| 5 | 1+1.44T+5T2 |
| 11 | 1−1.55T+11T2 |
| 17 | 1−2.44T+17T2 |
| 19 | 1+5.44T+19T2 |
| 23 | 1+5.89T+23T2 |
| 29 | 1−3.89T+29T2 |
| 31 | 1−1.44T+31T2 |
| 37 | 1+3.55T+37T2 |
| 41 | 1+1.10T+41T2 |
| 43 | 1−T+43T2 |
| 47 | 1−1.44T+47T2 |
| 53 | 1+7.89T+53T2 |
| 59 | 1+14T+59T2 |
| 61 | 1−2T+61T2 |
| 67 | 1−2.89T+67T2 |
| 71 | 1−7.55T+71T2 |
| 73 | 1−13.2T+73T2 |
| 79 | 1+11.8T+79T2 |
| 83 | 1+10.3T+83T2 |
| 89 | 1−6.55T+89T2 |
| 97 | 1−15.4T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.798772106184225285536196335381, −8.081538455527208371188214947018, −7.27922739571828070743884488593, −6.24018790693486286306002051263, −6.09266770036734299740367835407, −4.93761000827692571057122557010, −4.28186671022114994007035871071, −3.41373726259073871327280850401, −1.87333330443159406517556187339, −0.54986255372974326845782942662,
0.54986255372974326845782942662, 1.87333330443159406517556187339, 3.41373726259073871327280850401, 4.28186671022114994007035871071, 4.93761000827692571057122557010, 6.09266770036734299740367835407, 6.24018790693486286306002051263, 7.27922739571828070743884488593, 8.081538455527208371188214947018, 8.798772106184225285536196335381