Properties

Label 2-2548-1.1-c1-0-1
Degree $2$
Conductor $2548$
Sign $1$
Analytic cond. $20.3458$
Root an. cond. $4.51064$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.44·3-s − 1.44·5-s + 2.99·9-s + 1.55·11-s + 13-s + 3.55·15-s + 2.44·17-s − 5.44·19-s − 5.89·23-s − 2.89·25-s + 3.89·29-s + 1.44·31-s − 3.79·33-s − 3.55·37-s − 2.44·39-s − 1.10·41-s + 43-s − 4.34·45-s + 1.44·47-s − 5.99·51-s − 7.89·53-s − 2.24·55-s + 13.3·57-s − 14·59-s + 2·61-s − 1.44·65-s + 2.89·67-s + ⋯
L(s)  = 1  − 1.41·3-s − 0.648·5-s + 0.999·9-s + 0.467·11-s + 0.277·13-s + 0.916·15-s + 0.594·17-s − 1.25·19-s − 1.23·23-s − 0.579·25-s + 0.724·29-s + 0.260·31-s − 0.661·33-s − 0.583·37-s − 0.392·39-s − 0.171·41-s + 0.152·43-s − 0.648·45-s + 0.211·47-s − 0.840·51-s − 1.08·53-s − 0.303·55-s + 1.76·57-s − 1.82·59-s + 0.256·61-s − 0.179·65-s + 0.354·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2548 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2548 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2548\)    =    \(2^{2} \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(20.3458\)
Root analytic conductor: \(4.51064\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2548,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6659744622\)
\(L(\frac12)\) \(\approx\) \(0.6659744622\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
13 \( 1 - T \)
good3 \( 1 + 2.44T + 3T^{2} \)
5 \( 1 + 1.44T + 5T^{2} \)
11 \( 1 - 1.55T + 11T^{2} \)
17 \( 1 - 2.44T + 17T^{2} \)
19 \( 1 + 5.44T + 19T^{2} \)
23 \( 1 + 5.89T + 23T^{2} \)
29 \( 1 - 3.89T + 29T^{2} \)
31 \( 1 - 1.44T + 31T^{2} \)
37 \( 1 + 3.55T + 37T^{2} \)
41 \( 1 + 1.10T + 41T^{2} \)
43 \( 1 - T + 43T^{2} \)
47 \( 1 - 1.44T + 47T^{2} \)
53 \( 1 + 7.89T + 53T^{2} \)
59 \( 1 + 14T + 59T^{2} \)
61 \( 1 - 2T + 61T^{2} \)
67 \( 1 - 2.89T + 67T^{2} \)
71 \( 1 - 7.55T + 71T^{2} \)
73 \( 1 - 13.2T + 73T^{2} \)
79 \( 1 + 11.8T + 79T^{2} \)
83 \( 1 + 10.3T + 83T^{2} \)
89 \( 1 - 6.55T + 89T^{2} \)
97 \( 1 - 15.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.798772106184225285536196335381, −8.081538455527208371188214947018, −7.27922739571828070743884488593, −6.24018790693486286306002051263, −6.09266770036734299740367835407, −4.93761000827692571057122557010, −4.28186671022114994007035871071, −3.41373726259073871327280850401, −1.87333330443159406517556187339, −0.54986255372974326845782942662, 0.54986255372974326845782942662, 1.87333330443159406517556187339, 3.41373726259073871327280850401, 4.28186671022114994007035871071, 4.93761000827692571057122557010, 6.09266770036734299740367835407, 6.24018790693486286306002051263, 7.27922739571828070743884488593, 8.081538455527208371188214947018, 8.798772106184225285536196335381

Graph of the $Z$-function along the critical line