Properties

Label 2548.2.a.m
Level 25482548
Weight 22
Character orbit 2548.a
Self dual yes
Analytic conductor 20.34620.346
Analytic rank 00
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2548,2,Mod(1,2548)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2548, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2548.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 2548=227213 2548 = 2^{2} \cdot 7^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2548.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 20.345882435020.3458824350
Analytic rank: 00
Dimension: 22
Coefficient field: Q(6)\Q(\sqrt{6})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x26 x^{2} - 6 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 364)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=6\beta = \sqrt{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+βq3+(β+1)q5+3q9+(β+4)q11+q13+(β+6)q15βq17+(β3)q19+(2β1)q23+(2β+2)q25+(2β1)q29++(3β+12)q99+O(q100) q + \beta q^{3} + (\beta + 1) q^{5} + 3 q^{9} + (\beta + 4) q^{11} + q^{13} + (\beta + 6) q^{15} - \beta q^{17} + (\beta - 3) q^{19} + (2 \beta - 1) q^{23} + (2 \beta + 2) q^{25} + ( - 2 \beta - 1) q^{29} + \cdots + (3 \beta + 12) q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+2q5+6q9+8q11+2q13+12q156q192q23+4q252q292q31+12q3312q3712q41+2q43+6q452q4712q516q53++24q99+O(q100) 2 q + 2 q^{5} + 6 q^{9} + 8 q^{11} + 2 q^{13} + 12 q^{15} - 6 q^{19} - 2 q^{23} + 4 q^{25} - 2 q^{29} - 2 q^{31} + 12 q^{33} - 12 q^{37} - 12 q^{41} + 2 q^{43} + 6 q^{45} - 2 q^{47} - 12 q^{51} - 6 q^{53}+ \cdots + 24 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−2.44949
2.44949
0 −2.44949 0 −1.44949 0 0 0 3.00000 0
1.2 0 2.44949 0 3.44949 0 0 0 3.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
77 1 -1
1313 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2548.2.a.m 2
7.b odd 2 1 364.2.a.c 2
7.c even 3 2 2548.2.j.l 4
7.d odd 6 2 2548.2.j.m 4
21.c even 2 1 3276.2.a.q 2
28.d even 2 1 1456.2.a.p 2
35.c odd 2 1 9100.2.a.v 2
56.e even 2 1 5824.2.a.bn 2
56.h odd 2 1 5824.2.a.bm 2
91.b odd 2 1 4732.2.a.i 2
91.i even 4 2 4732.2.g.f 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
364.2.a.c 2 7.b odd 2 1
1456.2.a.p 2 28.d even 2 1
2548.2.a.m 2 1.a even 1 1 trivial
2548.2.j.l 4 7.c even 3 2
2548.2.j.m 4 7.d odd 6 2
3276.2.a.q 2 21.c even 2 1
4732.2.a.i 2 91.b odd 2 1
4732.2.g.f 4 91.i even 4 2
5824.2.a.bm 2 56.h odd 2 1
5824.2.a.bn 2 56.e even 2 1
9100.2.a.v 2 35.c odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(2548))S_{2}^{\mathrm{new}}(\Gamma_0(2548)):

T326 T_{3}^{2} - 6 Copy content Toggle raw display
T522T55 T_{5}^{2} - 2T_{5} - 5 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T26 T^{2} - 6 Copy content Toggle raw display
55 T22T5 T^{2} - 2T - 5 Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 T28T+10 T^{2} - 8T + 10 Copy content Toggle raw display
1313 (T1)2 (T - 1)^{2} Copy content Toggle raw display
1717 T26 T^{2} - 6 Copy content Toggle raw display
1919 T2+6T+3 T^{2} + 6T + 3 Copy content Toggle raw display
2323 T2+2T23 T^{2} + 2T - 23 Copy content Toggle raw display
2929 T2+2T23 T^{2} + 2T - 23 Copy content Toggle raw display
3131 T2+2T5 T^{2} + 2T - 5 Copy content Toggle raw display
3737 T2+12T+30 T^{2} + 12T + 30 Copy content Toggle raw display
4141 T2+12T+12 T^{2} + 12T + 12 Copy content Toggle raw display
4343 (T1)2 (T - 1)^{2} Copy content Toggle raw display
4747 T2+2T5 T^{2} + 2T - 5 Copy content Toggle raw display
5353 T2+6T15 T^{2} + 6T - 15 Copy content Toggle raw display
5959 (T+14)2 (T + 14)^{2} Copy content Toggle raw display
6161 (T2)2 (T - 2)^{2} Copy content Toggle raw display
6767 T2+4T20 T^{2} + 4T - 20 Copy content Toggle raw display
7171 T220T+94 T^{2} - 20T + 94 Copy content Toggle raw display
7373 T22T149 T^{2} - 2T - 149 Copy content Toggle raw display
7979 T2+14T+25 T^{2} + 14T + 25 Copy content Toggle raw display
8383 T2+6T45 T^{2} + 6T - 45 Copy content Toggle raw display
8989 T218T+75 T^{2} - 18T + 75 Copy content Toggle raw display
9797 T226T+163 T^{2} - 26T + 163 Copy content Toggle raw display
show more
show less