Defining parameters
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(2548))\).
|
Total |
New |
Old |
Modular forms
| 201168 |
110345 |
90823 |
Cusp forms
| 193969 |
108209 |
85760 |
Eisenstein series
| 7199 |
2136 |
5063 |
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(2548))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label |
\(\chi\) |
Newforms |
Dimension |
\(\chi\) degree |
2548.2.a |
\(\chi_{2548}(1, \cdot)\) |
2548.2.a.a |
1 |
1 |
2548.2.a.b |
1 |
2548.2.a.c |
1 |
2548.2.a.d |
1 |
2548.2.a.e |
1 |
2548.2.a.f |
1 |
2548.2.a.g |
1 |
2548.2.a.h |
1 |
2548.2.a.i |
1 |
2548.2.a.j |
1 |
2548.2.a.k |
1 |
2548.2.a.l |
2 |
2548.2.a.m |
2 |
2548.2.a.n |
3 |
2548.2.a.o |
3 |
2548.2.a.p |
4 |
2548.2.a.q |
4 |
2548.2.a.r |
6 |
2548.2.a.s |
6 |
2548.2.f |
\(\chi_{2548}(391, \cdot)\) |
n/a |
240 |
1 |
2548.2.g |
\(\chi_{2548}(2157, \cdot)\) |
2548.2.g.a |
4 |
1 |
2548.2.g.b |
4 |
2548.2.g.c |
4 |
2548.2.g.d |
4 |
2548.2.g.e |
6 |
2548.2.g.f |
6 |
2548.2.g.g |
8 |
2548.2.g.h |
12 |
2548.2.h |
\(\chi_{2548}(2547, \cdot)\) |
n/a |
272 |
1 |
2548.2.i |
\(\chi_{2548}(165, \cdot)\) |
2548.2.i.a |
2 |
2 |
2548.2.i.b |
2 |
2548.2.i.c |
2 |
2548.2.i.d |
2 |
2548.2.i.e |
2 |
2548.2.i.f |
2 |
2548.2.i.g |
2 |
2548.2.i.h |
2 |
2548.2.i.i |
4 |
2548.2.i.j |
4 |
2548.2.i.k |
4 |
2548.2.i.l |
4 |
2548.2.i.m |
12 |
2548.2.i.n |
18 |
2548.2.i.o |
32 |
2548.2.j |
\(\chi_{2548}(1145, \cdot)\) |
2548.2.j.a |
2 |
2 |
2548.2.j.b |
2 |
2548.2.j.c |
2 |
2548.2.j.d |
2 |
2548.2.j.e |
2 |
2548.2.j.f |
2 |
2548.2.j.g |
2 |
2548.2.j.h |
2 |
2548.2.j.i |
2 |
2548.2.j.j |
2 |
2548.2.j.k |
4 |
2548.2.j.l |
4 |
2548.2.j.m |
4 |
2548.2.j.n |
4 |
2548.2.j.o |
6 |
2548.2.j.p |
6 |
2548.2.j.q |
8 |
2548.2.j.r |
12 |
2548.2.j.s |
12 |
2548.2.k |
\(\chi_{2548}(393, \cdot)\) |
2548.2.k.a |
2 |
2 |
2548.2.k.b |
2 |
2548.2.k.c |
2 |
2548.2.k.d |
2 |
2548.2.k.e |
4 |
2548.2.k.f |
4 |
2548.2.k.g |
12 |
2548.2.k.h |
18 |
2548.2.k.i |
18 |
2548.2.k.j |
32 |
2548.2.l |
\(\chi_{2548}(373, \cdot)\) |
2548.2.l.a |
2 |
2 |
2548.2.l.b |
2 |
2548.2.l.c |
2 |
2548.2.l.d |
2 |
2548.2.l.e |
2 |
2548.2.l.f |
2 |
2548.2.l.g |
2 |
2548.2.l.h |
2 |
2548.2.l.i |
4 |
2548.2.l.j |
4 |
2548.2.l.k |
4 |
2548.2.l.l |
4 |
2548.2.l.m |
12 |
2548.2.l.n |
18 |
2548.2.l.o |
32 |
2548.2.m |
\(\chi_{2548}(99, \cdot)\) |
n/a |
554 |
2 |
2548.2.n |
\(\chi_{2548}(489, \cdot)\) |
2548.2.n.a |
40 |
2 |
2548.2.n.b |
56 |
2548.2.u |
\(\chi_{2548}(589, \cdot)\) |
2548.2.u.a |
2 |
2 |
2548.2.u.b |
16 |
2548.2.u.c |
16 |
2548.2.u.d |
18 |
2548.2.u.e |
18 |
2548.2.u.f |
24 |
2548.2.v |
\(\chi_{2548}(783, \cdot)\) |
n/a |
544 |
2 |
2548.2.w |
\(\chi_{2548}(803, \cdot)\) |
n/a |
544 |
2 |
2548.2.x |
\(\chi_{2548}(1195, \cdot)\) |
n/a |
544 |
2 |
2548.2.y |
\(\chi_{2548}(753, \cdot)\) |
2548.2.y.a |
8 |
2 |
2548.2.y.b |
8 |
2548.2.y.c |
8 |
2548.2.y.d |
12 |
2548.2.y.e |
16 |
2548.2.y.f |
16 |
2548.2.y.g |
24 |
2548.2.z |
\(\chi_{2548}(1587, \cdot)\) |
n/a |
480 |
2 |
2548.2.ba |
\(\chi_{2548}(815, \cdot)\) |
n/a |
544 |
2 |
2548.2.bb |
\(\chi_{2548}(569, \cdot)\) |
2548.2.bb.a |
2 |
2 |
2548.2.bb.b |
2 |
2548.2.bb.c |
16 |
2548.2.bb.d |
16 |
2548.2.bb.e |
16 |
2548.2.bb.f |
18 |
2548.2.bb.g |
24 |
2548.2.bc |
\(\chi_{2548}(979, \cdot)\) |
n/a |
544 |
2 |
2548.2.bp |
\(\chi_{2548}(1011, \cdot)\) |
n/a |
544 |
2 |
2548.2.bq |
\(\chi_{2548}(361, \cdot)\) |
2548.2.bq.a |
2 |
2 |
2548.2.bq.b |
2 |
2548.2.bq.c |
16 |
2548.2.bq.d |
16 |
2548.2.bq.e |
16 |
2548.2.bq.f |
18 |
2548.2.bq.g |
24 |
2548.2.br |
\(\chi_{2548}(607, \cdot)\) |
n/a |
544 |
2 |
2548.2.bs |
\(\chi_{2548}(365, \cdot)\) |
n/a |
336 |
6 |
2548.2.bt |
\(\chi_{2548}(717, \cdot)\) |
n/a |
188 |
4 |
2548.2.bu |
\(\chi_{2548}(67, \cdot)\) |
n/a |
1088 |
4 |
2548.2.cb |
\(\chi_{2548}(275, \cdot)\) |
n/a |
1088 |
4 |
2548.2.cc |
\(\chi_{2548}(97, \cdot)\) |
n/a |
184 |
4 |
2548.2.cd |
\(\chi_{2548}(1097, \cdot)\) |
n/a |
184 |
4 |
2548.2.ce |
\(\chi_{2548}(687, \cdot)\) |
n/a |
1108 |
4 |
2548.2.cf |
\(\chi_{2548}(655, \cdot)\) |
n/a |
1088 |
4 |
2548.2.cg |
\(\chi_{2548}(509, \cdot)\) |
n/a |
188 |
4 |
2548.2.cj |
\(\chi_{2548}(363, \cdot)\) |
n/a |
2328 |
6 |
2548.2.ck |
\(\chi_{2548}(337, \cdot)\) |
n/a |
384 |
6 |
2548.2.cl |
\(\chi_{2548}(27, \cdot)\) |
n/a |
2016 |
6 |
2548.2.cq |
\(\chi_{2548}(9, \cdot)\) |
n/a |
780 |
12 |
2548.2.cr |
\(\chi_{2548}(29, \cdot)\) |
n/a |
792 |
12 |
2548.2.cs |
\(\chi_{2548}(53, \cdot)\) |
n/a |
672 |
12 |
2548.2.ct |
\(\chi_{2548}(289, \cdot)\) |
n/a |
780 |
12 |
2548.2.cw |
\(\chi_{2548}(125, \cdot)\) |
n/a |
768 |
12 |
2548.2.cx |
\(\chi_{2548}(239, \cdot)\) |
n/a |
4656 |
12 |
2548.2.cy |
\(\chi_{2548}(3, \cdot)\) |
n/a |
4656 |
12 |
2548.2.cz |
\(\chi_{2548}(121, \cdot)\) |
n/a |
780 |
12 |
2548.2.da |
\(\chi_{2548}(283, \cdot)\) |
n/a |
4656 |
12 |
2548.2.dn |
\(\chi_{2548}(251, \cdot)\) |
n/a |
4656 |
12 |
2548.2.do |
\(\chi_{2548}(205, \cdot)\) |
n/a |
780 |
12 |
2548.2.dp |
\(\chi_{2548}(87, \cdot)\) |
n/a |
4656 |
12 |
2548.2.dq |
\(\chi_{2548}(131, \cdot)\) |
n/a |
4032 |
12 |
2548.2.dr |
\(\chi_{2548}(25, \cdot)\) |
n/a |
792 |
12 |
2548.2.ds |
\(\chi_{2548}(103, \cdot)\) |
n/a |
4656 |
12 |
2548.2.dt |
\(\chi_{2548}(75, \cdot)\) |
n/a |
4656 |
12 |
2548.2.du |
\(\chi_{2548}(55, \cdot)\) |
n/a |
4656 |
12 |
2548.2.dv |
\(\chi_{2548}(225, \cdot)\) |
n/a |
792 |
12 |
2548.2.ec |
\(\chi_{2548}(45, \cdot)\) |
n/a |
1560 |
24 |
2548.2.ed |
\(\chi_{2548}(135, \cdot)\) |
n/a |
9312 |
24 |
2548.2.ee |
\(\chi_{2548}(15, \cdot)\) |
n/a |
9312 |
24 |
2548.2.ef |
\(\chi_{2548}(5, \cdot)\) |
n/a |
1584 |
24 |
2548.2.eg |
\(\chi_{2548}(41, \cdot)\) |
n/a |
1584 |
24 |
2548.2.eh |
\(\chi_{2548}(123, \cdot)\) |
n/a |
9312 |
24 |
2548.2.eo |
\(\chi_{2548}(11, \cdot)\) |
n/a |
9312 |
24 |
2548.2.ep |
\(\chi_{2548}(33, \cdot)\) |
n/a |
1560 |
24 |
"n/a" means that newforms for that character have not been added to the database yet