Properties

Label 2548.2
Level 2548
Weight 2
Dimension 108209
Nonzero newspaces 60
Sturm bound 790272
Trace bound 11

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 2548 = 2^{2} \cdot 7^{2} \cdot 13 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 60 \)
Sturm bound: \(790272\)
Trace bound: \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(2548))\).

Total New Old
Modular forms 201168 110345 90823
Cusp forms 193969 108209 85760
Eisenstein series 7199 2136 5063

Trace form

\( 108209 q - 156 q^{2} - 4 q^{3} - 156 q^{4} - 324 q^{5} - 144 q^{6} - 8 q^{7} - 264 q^{8} - 312 q^{9} - 120 q^{10} + 6 q^{11} - 90 q^{12} - 334 q^{13} - 372 q^{14} + 12 q^{15} - 108 q^{16} - 327 q^{17} - 114 q^{18}+ \cdots + 90 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(2548))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
2548.2.a \(\chi_{2548}(1, \cdot)\) 2548.2.a.a 1 1
2548.2.a.b 1
2548.2.a.c 1
2548.2.a.d 1
2548.2.a.e 1
2548.2.a.f 1
2548.2.a.g 1
2548.2.a.h 1
2548.2.a.i 1
2548.2.a.j 1
2548.2.a.k 1
2548.2.a.l 2
2548.2.a.m 2
2548.2.a.n 3
2548.2.a.o 3
2548.2.a.p 4
2548.2.a.q 4
2548.2.a.r 6
2548.2.a.s 6
2548.2.f \(\chi_{2548}(391, \cdot)\) n/a 240 1
2548.2.g \(\chi_{2548}(2157, \cdot)\) 2548.2.g.a 4 1
2548.2.g.b 4
2548.2.g.c 4
2548.2.g.d 4
2548.2.g.e 6
2548.2.g.f 6
2548.2.g.g 8
2548.2.g.h 12
2548.2.h \(\chi_{2548}(2547, \cdot)\) n/a 272 1
2548.2.i \(\chi_{2548}(165, \cdot)\) 2548.2.i.a 2 2
2548.2.i.b 2
2548.2.i.c 2
2548.2.i.d 2
2548.2.i.e 2
2548.2.i.f 2
2548.2.i.g 2
2548.2.i.h 2
2548.2.i.i 4
2548.2.i.j 4
2548.2.i.k 4
2548.2.i.l 4
2548.2.i.m 12
2548.2.i.n 18
2548.2.i.o 32
2548.2.j \(\chi_{2548}(1145, \cdot)\) 2548.2.j.a 2 2
2548.2.j.b 2
2548.2.j.c 2
2548.2.j.d 2
2548.2.j.e 2
2548.2.j.f 2
2548.2.j.g 2
2548.2.j.h 2
2548.2.j.i 2
2548.2.j.j 2
2548.2.j.k 4
2548.2.j.l 4
2548.2.j.m 4
2548.2.j.n 4
2548.2.j.o 6
2548.2.j.p 6
2548.2.j.q 8
2548.2.j.r 12
2548.2.j.s 12
2548.2.k \(\chi_{2548}(393, \cdot)\) 2548.2.k.a 2 2
2548.2.k.b 2
2548.2.k.c 2
2548.2.k.d 2
2548.2.k.e 4
2548.2.k.f 4
2548.2.k.g 12
2548.2.k.h 18
2548.2.k.i 18
2548.2.k.j 32
2548.2.l \(\chi_{2548}(373, \cdot)\) 2548.2.l.a 2 2
2548.2.l.b 2
2548.2.l.c 2
2548.2.l.d 2
2548.2.l.e 2
2548.2.l.f 2
2548.2.l.g 2
2548.2.l.h 2
2548.2.l.i 4
2548.2.l.j 4
2548.2.l.k 4
2548.2.l.l 4
2548.2.l.m 12
2548.2.l.n 18
2548.2.l.o 32
2548.2.m \(\chi_{2548}(99, \cdot)\) n/a 554 2
2548.2.n \(\chi_{2548}(489, \cdot)\) 2548.2.n.a 40 2
2548.2.n.b 56
2548.2.u \(\chi_{2548}(589, \cdot)\) 2548.2.u.a 2 2
2548.2.u.b 16
2548.2.u.c 16
2548.2.u.d 18
2548.2.u.e 18
2548.2.u.f 24
2548.2.v \(\chi_{2548}(783, \cdot)\) n/a 544 2
2548.2.w \(\chi_{2548}(803, \cdot)\) n/a 544 2
2548.2.x \(\chi_{2548}(1195, \cdot)\) n/a 544 2
2548.2.y \(\chi_{2548}(753, \cdot)\) 2548.2.y.a 8 2
2548.2.y.b 8
2548.2.y.c 8
2548.2.y.d 12
2548.2.y.e 16
2548.2.y.f 16
2548.2.y.g 24
2548.2.z \(\chi_{2548}(1587, \cdot)\) n/a 480 2
2548.2.ba \(\chi_{2548}(815, \cdot)\) n/a 544 2
2548.2.bb \(\chi_{2548}(569, \cdot)\) 2548.2.bb.a 2 2
2548.2.bb.b 2
2548.2.bb.c 16
2548.2.bb.d 16
2548.2.bb.e 16
2548.2.bb.f 18
2548.2.bb.g 24
2548.2.bc \(\chi_{2548}(979, \cdot)\) n/a 544 2
2548.2.bp \(\chi_{2548}(1011, \cdot)\) n/a 544 2
2548.2.bq \(\chi_{2548}(361, \cdot)\) 2548.2.bq.a 2 2
2548.2.bq.b 2
2548.2.bq.c 16
2548.2.bq.d 16
2548.2.bq.e 16
2548.2.bq.f 18
2548.2.bq.g 24
2548.2.br \(\chi_{2548}(607, \cdot)\) n/a 544 2
2548.2.bs \(\chi_{2548}(365, \cdot)\) n/a 336 6
2548.2.bt \(\chi_{2548}(717, \cdot)\) n/a 188 4
2548.2.bu \(\chi_{2548}(67, \cdot)\) n/a 1088 4
2548.2.cb \(\chi_{2548}(275, \cdot)\) n/a 1088 4
2548.2.cc \(\chi_{2548}(97, \cdot)\) n/a 184 4
2548.2.cd \(\chi_{2548}(1097, \cdot)\) n/a 184 4
2548.2.ce \(\chi_{2548}(687, \cdot)\) n/a 1108 4
2548.2.cf \(\chi_{2548}(655, \cdot)\) n/a 1088 4
2548.2.cg \(\chi_{2548}(509, \cdot)\) n/a 188 4
2548.2.cj \(\chi_{2548}(363, \cdot)\) n/a 2328 6
2548.2.ck \(\chi_{2548}(337, \cdot)\) n/a 384 6
2548.2.cl \(\chi_{2548}(27, \cdot)\) n/a 2016 6
2548.2.cq \(\chi_{2548}(9, \cdot)\) n/a 780 12
2548.2.cr \(\chi_{2548}(29, \cdot)\) n/a 792 12
2548.2.cs \(\chi_{2548}(53, \cdot)\) n/a 672 12
2548.2.ct \(\chi_{2548}(289, \cdot)\) n/a 780 12
2548.2.cw \(\chi_{2548}(125, \cdot)\) n/a 768 12
2548.2.cx \(\chi_{2548}(239, \cdot)\) n/a 4656 12
2548.2.cy \(\chi_{2548}(3, \cdot)\) n/a 4656 12
2548.2.cz \(\chi_{2548}(121, \cdot)\) n/a 780 12
2548.2.da \(\chi_{2548}(283, \cdot)\) n/a 4656 12
2548.2.dn \(\chi_{2548}(251, \cdot)\) n/a 4656 12
2548.2.do \(\chi_{2548}(205, \cdot)\) n/a 780 12
2548.2.dp \(\chi_{2548}(87, \cdot)\) n/a 4656 12
2548.2.dq \(\chi_{2548}(131, \cdot)\) n/a 4032 12
2548.2.dr \(\chi_{2548}(25, \cdot)\) n/a 792 12
2548.2.ds \(\chi_{2548}(103, \cdot)\) n/a 4656 12
2548.2.dt \(\chi_{2548}(75, \cdot)\) n/a 4656 12
2548.2.du \(\chi_{2548}(55, \cdot)\) n/a 4656 12
2548.2.dv \(\chi_{2548}(225, \cdot)\) n/a 792 12
2548.2.ec \(\chi_{2548}(45, \cdot)\) n/a 1560 24
2548.2.ed \(\chi_{2548}(135, \cdot)\) n/a 9312 24
2548.2.ee \(\chi_{2548}(15, \cdot)\) n/a 9312 24
2548.2.ef \(\chi_{2548}(5, \cdot)\) n/a 1584 24
2548.2.eg \(\chi_{2548}(41, \cdot)\) n/a 1584 24
2548.2.eh \(\chi_{2548}(123, \cdot)\) n/a 9312 24
2548.2.eo \(\chi_{2548}(11, \cdot)\) n/a 9312 24
2548.2.ep \(\chi_{2548}(33, \cdot)\) n/a 1560 24

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(2548))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(2548)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(26))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(49))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(52))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(91))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(98))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(182))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(196))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(364))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(637))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1274))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2548))\)\(^{\oplus 1}\)