Properties

Label 2548.dp
Modulus 25482548
Conductor 25482548
Order 4242
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2548, base_ring=CyclotomicField(42))
 
M = H._module
 
chi = DirichletCharacter(H, M([21,19,28]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(87,2548))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: 25482548
Conductor: 25482548
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 4242
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: Q(ζ21)\Q(\zeta_{21})
Fixed field: Number field defined by a degree 42 polynomial

Characters in Galois orbit

Character 1-1 11 33 55 99 1111 1515 1717 1919 2323 2525 2727
χ2548(87,)\chi_{2548}(87,\cdot) 11 11 e(1321)e\left(\frac{13}{21}\right) e(542)e\left(\frac{5}{42}\right) e(521)e\left(\frac{5}{21}\right) e(1142)e\left(\frac{11}{42}\right) e(3142)e\left(\frac{31}{42}\right) e(914)e\left(\frac{9}{14}\right) e(23)e\left(\frac{2}{3}\right) e(514)e\left(\frac{5}{14}\right) e(521)e\left(\frac{5}{21}\right) e(67)e\left(\frac{6}{7}\right)
χ2548(159,)\chi_{2548}(159,\cdot) 11 11 e(221)e\left(\frac{2}{21}\right) e(2542)e\left(\frac{25}{42}\right) e(421)e\left(\frac{4}{21}\right) e(1342)e\left(\frac{13}{42}\right) e(2942)e\left(\frac{29}{42}\right) e(314)e\left(\frac{3}{14}\right) e(13)e\left(\frac{1}{3}\right) e(1114)e\left(\frac{11}{14}\right) e(421)e\left(\frac{4}{21}\right) e(27)e\left(\frac{2}{7}\right)
χ2548(451,)\chi_{2548}(451,\cdot) 11 11 e(1021)e\left(\frac{10}{21}\right) e(4142)e\left(\frac{41}{42}\right) e(2021)e\left(\frac{20}{21}\right) e(2342)e\left(\frac{23}{42}\right) e(1942)e\left(\frac{19}{42}\right) e(114)e\left(\frac{1}{14}\right) e(23)e\left(\frac{2}{3}\right) e(1314)e\left(\frac{13}{14}\right) e(2021)e\left(\frac{20}{21}\right) e(37)e\left(\frac{3}{7}\right)
χ2548(523,)\chi_{2548}(523,\cdot) 11 11 e(1721)e\left(\frac{17}{21}\right) e(1342)e\left(\frac{13}{42}\right) e(1321)e\left(\frac{13}{21}\right) e(3742)e\left(\frac{37}{42}\right) e(542)e\left(\frac{5}{42}\right) e(114)e\left(\frac{1}{14}\right) e(13)e\left(\frac{1}{3}\right) e(1314)e\left(\frac{13}{14}\right) e(1321)e\left(\frac{13}{21}\right) e(37)e\left(\frac{3}{7}\right)
χ2548(887,)\chi_{2548}(887,\cdot) 11 11 e(1121)e\left(\frac{11}{21}\right) e(142)e\left(\frac{1}{42}\right) e(121)e\left(\frac{1}{21}\right) e(1942)e\left(\frac{19}{42}\right) e(2342)e\left(\frac{23}{42}\right) e(1314)e\left(\frac{13}{14}\right) e(13)e\left(\frac{1}{3}\right) e(114)e\left(\frac{1}{14}\right) e(121)e\left(\frac{1}{21}\right) e(47)e\left(\frac{4}{7}\right)
χ2548(1179,)\chi_{2548}(1179,\cdot) 11 11 e(421)e\left(\frac{4}{21}\right) e(2942)e\left(\frac{29}{42}\right) e(821)e\left(\frac{8}{21}\right) e(542)e\left(\frac{5}{42}\right) e(3742)e\left(\frac{37}{42}\right) e(1314)e\left(\frac{13}{14}\right) e(23)e\left(\frac{2}{3}\right) e(114)e\left(\frac{1}{14}\right) e(821)e\left(\frac{8}{21}\right) e(47)e\left(\frac{4}{7}\right)
χ2548(1251,)\chi_{2548}(1251,\cdot) 11 11 e(521)e\left(\frac{5}{21}\right) e(3142)e\left(\frac{31}{42}\right) e(1021)e\left(\frac{10}{21}\right) e(142)e\left(\frac{1}{42}\right) e(4142)e\left(\frac{41}{42}\right) e(1114)e\left(\frac{11}{14}\right) e(13)e\left(\frac{1}{3}\right) e(314)e\left(\frac{3}{14}\right) e(1021)e\left(\frac{10}{21}\right) e(57)e\left(\frac{5}{7}\right)
χ2548(1543,)\chi_{2548}(1543,\cdot) 11 11 e(121)e\left(\frac{1}{21}\right) e(2342)e\left(\frac{23}{42}\right) e(221)e\left(\frac{2}{21}\right) e(1742)e\left(\frac{17}{42}\right) e(2542)e\left(\frac{25}{42}\right) e(514)e\left(\frac{5}{14}\right) e(23)e\left(\frac{2}{3}\right) e(914)e\left(\frac{9}{14}\right) e(221)e\left(\frac{2}{21}\right) e(17)e\left(\frac{1}{7}\right)
χ2548(1615,)\chi_{2548}(1615,\cdot) 11 11 e(2021)e\left(\frac{20}{21}\right) e(1942)e\left(\frac{19}{42}\right) e(1921)e\left(\frac{19}{21}\right) e(2542)e\left(\frac{25}{42}\right) e(1742)e\left(\frac{17}{42}\right) e(914)e\left(\frac{9}{14}\right) e(13)e\left(\frac{1}{3}\right) e(514)e\left(\frac{5}{14}\right) e(1921)e\left(\frac{19}{21}\right) e(67)e\left(\frac{6}{7}\right)
χ2548(1907,)\chi_{2548}(1907,\cdot) 11 11 e(1921)e\left(\frac{19}{21}\right) e(1742)e\left(\frac{17}{42}\right) e(1721)e\left(\frac{17}{21}\right) e(2942)e\left(\frac{29}{42}\right) e(1342)e\left(\frac{13}{42}\right) e(1114)e\left(\frac{11}{14}\right) e(23)e\left(\frac{2}{3}\right) e(314)e\left(\frac{3}{14}\right) e(1721)e\left(\frac{17}{21}\right) e(57)e\left(\frac{5}{7}\right)
χ2548(2271,)\chi_{2548}(2271,\cdot) 11 11 e(1621)e\left(\frac{16}{21}\right) e(1142)e\left(\frac{11}{42}\right) e(1121)e\left(\frac{11}{21}\right) e(4142)e\left(\frac{41}{42}\right) e(142)e\left(\frac{1}{42}\right) e(314)e\left(\frac{3}{14}\right) e(23)e\left(\frac{2}{3}\right) e(1114)e\left(\frac{11}{14}\right) e(1121)e\left(\frac{11}{21}\right) e(27)e\left(\frac{2}{7}\right)
χ2548(2343,)\chi_{2548}(2343,\cdot) 11 11 e(821)e\left(\frac{8}{21}\right) e(3742)e\left(\frac{37}{42}\right) e(1621)e\left(\frac{16}{21}\right) e(3142)e\left(\frac{31}{42}\right) e(1142)e\left(\frac{11}{42}\right) e(514)e\left(\frac{5}{14}\right) e(13)e\left(\frac{1}{3}\right) e(914)e\left(\frac{9}{14}\right) e(1621)e\left(\frac{16}{21}\right) e(17)e\left(\frac{1}{7}\right)