from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2548, base_ring=CyclotomicField(42))
M = H._module
chi = DirichletCharacter(H, M([21,31,28]))
pari: [g,chi] = znchar(Mod(1907,2548))
Basic properties
Modulus: | \(2548\) | |
Conductor: | \(2548\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(42\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 2548.dp
\(\chi_{2548}(87,\cdot)\) \(\chi_{2548}(159,\cdot)\) \(\chi_{2548}(451,\cdot)\) \(\chi_{2548}(523,\cdot)\) \(\chi_{2548}(887,\cdot)\) \(\chi_{2548}(1179,\cdot)\) \(\chi_{2548}(1251,\cdot)\) \(\chi_{2548}(1543,\cdot)\) \(\chi_{2548}(1615,\cdot)\) \(\chi_{2548}(1907,\cdot)\) \(\chi_{2548}(2271,\cdot)\) \(\chi_{2548}(2343,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{21})\) |
Fixed field: | Number field defined by a degree 42 polynomial |
Values on generators
\((1275,885,197)\) → \((-1,e\left(\frac{31}{42}\right),e\left(\frac{2}{3}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(3\) | \(5\) | \(9\) | \(11\) | \(15\) | \(17\) | \(19\) | \(23\) | \(25\) | \(27\) |
\( \chi_{ 2548 }(1907, a) \) | \(1\) | \(1\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{17}{42}\right)\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{29}{42}\right)\) | \(e\left(\frac{13}{42}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{5}{7}\right)\) |
sage: chi.jacobi_sum(n)