Properties

Label 2548.1907
Modulus 25482548
Conductor 25482548
Order 4242
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2548, base_ring=CyclotomicField(42))
 
M = H._module
 
chi = DirichletCharacter(H, M([21,31,28]))
 
pari: [g,chi] = znchar(Mod(1907,2548))
 

Basic properties

Modulus: 25482548
Conductor: 25482548
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 4242
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2548.dp

χ2548(87,)\chi_{2548}(87,\cdot) χ2548(159,)\chi_{2548}(159,\cdot) χ2548(451,)\chi_{2548}(451,\cdot) χ2548(523,)\chi_{2548}(523,\cdot) χ2548(887,)\chi_{2548}(887,\cdot) χ2548(1179,)\chi_{2548}(1179,\cdot) χ2548(1251,)\chi_{2548}(1251,\cdot) χ2548(1543,)\chi_{2548}(1543,\cdot) χ2548(1615,)\chi_{2548}(1615,\cdot) χ2548(1907,)\chi_{2548}(1907,\cdot) χ2548(2271,)\chi_{2548}(2271,\cdot) χ2548(2343,)\chi_{2548}(2343,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ21)\Q(\zeta_{21})
Fixed field: Number field defined by a degree 42 polynomial

Values on generators

(1275,885,197)(1275,885,197)(1,e(3142),e(23))(-1,e\left(\frac{31}{42}\right),e\left(\frac{2}{3}\right))

First values

aa 1-1113355991111151517171919232325252727
χ2548(1907,a) \chi_{ 2548 }(1907, a) 1111e(1921)e\left(\frac{19}{21}\right)e(1742)e\left(\frac{17}{42}\right)e(1721)e\left(\frac{17}{21}\right)e(2942)e\left(\frac{29}{42}\right)e(1342)e\left(\frac{13}{42}\right)e(1114)e\left(\frac{11}{14}\right)e(23)e\left(\frac{2}{3}\right)e(314)e\left(\frac{3}{14}\right)e(1721)e\left(\frac{17}{21}\right)e(57)e\left(\frac{5}{7}\right)
sage: chi.jacobi_sum(n)
 
χ2548(1907,a)   \chi_{ 2548 }(1907,a) \; at   a=\;a = e.g. 2