Properties

Label 2548.1907
Modulus $2548$
Conductor $2548$
Order $42$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2548, base_ring=CyclotomicField(42))
 
M = H._module
 
chi = DirichletCharacter(H, M([21,31,28]))
 
pari: [g,chi] = znchar(Mod(1907,2548))
 

Basic properties

Modulus: \(2548\)
Conductor: \(2548\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(42\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2548.dp

\(\chi_{2548}(87,\cdot)\) \(\chi_{2548}(159,\cdot)\) \(\chi_{2548}(451,\cdot)\) \(\chi_{2548}(523,\cdot)\) \(\chi_{2548}(887,\cdot)\) \(\chi_{2548}(1179,\cdot)\) \(\chi_{2548}(1251,\cdot)\) \(\chi_{2548}(1543,\cdot)\) \(\chi_{2548}(1615,\cdot)\) \(\chi_{2548}(1907,\cdot)\) \(\chi_{2548}(2271,\cdot)\) \(\chi_{2548}(2343,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{21})\)
Fixed field: Number field defined by a degree 42 polynomial

Values on generators

\((1275,885,197)\) → \((-1,e\left(\frac{31}{42}\right),e\left(\frac{2}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(9\)\(11\)\(15\)\(17\)\(19\)\(23\)\(25\)\(27\)
\( \chi_{ 2548 }(1907, a) \) \(1\)\(1\)\(e\left(\frac{19}{21}\right)\)\(e\left(\frac{17}{42}\right)\)\(e\left(\frac{17}{21}\right)\)\(e\left(\frac{29}{42}\right)\)\(e\left(\frac{13}{42}\right)\)\(e\left(\frac{11}{14}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{3}{14}\right)\)\(e\left(\frac{17}{21}\right)\)\(e\left(\frac{5}{7}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2548 }(1907,a) \;\) at \(\;a = \) e.g. 2