L(s) = 1 | − 0.605·3-s + (−3.48 − 2.01i)5-s − 2.63·9-s + 3.01i·11-s + (1.03 + 3.45i)13-s + (2.11 + 1.21i)15-s + (2.53 − 4.38i)17-s + 3.31i·19-s + (−2.45 − 4.25i)23-s + (5.60 + 9.71i)25-s + 3.41·27-s + (−1.30 + 2.26i)29-s + (−8.86 + 5.11i)31-s − 1.82i·33-s + (−1.76 + 1.02i)37-s + ⋯ |
L(s) = 1 | − 0.349·3-s + (−1.55 − 0.900i)5-s − 0.877·9-s + 0.909i·11-s + (0.285 + 0.958i)13-s + (0.545 + 0.314i)15-s + (0.614 − 1.06i)17-s + 0.761i·19-s + (−0.511 − 0.886i)23-s + (1.12 + 1.94i)25-s + 0.656·27-s + (−0.243 + 0.421i)29-s + (−1.59 + 0.919i)31-s − 0.318i·33-s + (−0.290 + 0.167i)37-s + ⋯ |
Λ(s)=(=(2548s/2ΓC(s)L(s)(0.643+0.765i)Λ(2−s)
Λ(s)=(=(2548s/2ΓC(s+1/2)L(s)(0.643+0.765i)Λ(1−s)
Degree: |
2 |
Conductor: |
2548
= 22⋅72⋅13
|
Sign: |
0.643+0.765i
|
Analytic conductor: |
20.3458 |
Root analytic conductor: |
4.51064 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2548(1941,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2548, ( :1/2), 0.643+0.765i)
|
Particular Values
L(1) |
≈ |
0.6710846765 |
L(21) |
≈ |
0.6710846765 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1 |
| 13 | 1+(−1.03−3.45i)T |
good | 3 | 1+0.605T+3T2 |
| 5 | 1+(3.48+2.01i)T+(2.5+4.33i)T2 |
| 11 | 1−3.01iT−11T2 |
| 17 | 1+(−2.53+4.38i)T+(−8.5−14.7i)T2 |
| 19 | 1−3.31iT−19T2 |
| 23 | 1+(2.45+4.25i)T+(−11.5+19.9i)T2 |
| 29 | 1+(1.30−2.26i)T+(−14.5−25.1i)T2 |
| 31 | 1+(8.86−5.11i)T+(15.5−26.8i)T2 |
| 37 | 1+(1.76−1.02i)T+(18.5−32.0i)T2 |
| 41 | 1+(0.252+0.145i)T+(20.5+35.5i)T2 |
| 43 | 1+(0.581+1.00i)T+(−21.5+37.2i)T2 |
| 47 | 1+(3.64+2.10i)T+(23.5+40.7i)T2 |
| 53 | 1+(1.74+3.02i)T+(−26.5+45.8i)T2 |
| 59 | 1+(−5.84−3.37i)T+(29.5+51.0i)T2 |
| 61 | 1−13.2T+61T2 |
| 67 | 1+4.13iT−67T2 |
| 71 | 1+(1.10−0.639i)T+(35.5−61.4i)T2 |
| 73 | 1+(−12.9+7.45i)T+(36.5−63.2i)T2 |
| 79 | 1+(−3.45+5.99i)T+(−39.5−68.4i)T2 |
| 83 | 1+10.4iT−83T2 |
| 89 | 1+(0.511−0.295i)T+(44.5−77.0i)T2 |
| 97 | 1+(−4.94+2.85i)T+(48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.722639610079831158155775050273, −8.082009713110955019091504938372, −7.31951955211937855641090244151, −6.65949500311770359550624017973, −5.40224146704504512395703896402, −4.88652456031013094910494971603, −4.02039036807863898897089941785, −3.29791698587464063649556136938, −1.80533337343142112157151878977, −0.41104898762986041707962024922,
0.64276366222519664525810203679, 2.55889817464157630651148417071, 3.59568360903184840803012659573, 3.75096454430883935203744346952, 5.27078029917858992325624176618, 5.88985137049404324602837030232, 6.71029666761524988296470659311, 7.67841815089566583086028485781, 8.084326513952875366014526399660, 8.723074717159982645813843794924