Properties

Label 2548.2.bq.f.1941.4
Level $2548$
Weight $2$
Character 2548.1941
Analytic conductor $20.346$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2548,2,Mod(361,2548)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2548, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2548.361");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2548 = 2^{2} \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2548.bq (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.3458824350\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(9\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - x^{17} + 17 x^{16} - 6 x^{15} + 188 x^{14} - 49 x^{13} + 1116 x^{12} - x^{11} + 4649 x^{10} + \cdots + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 364)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1941.4
Root \(-0.302937 + 0.524702i\) of defining polynomial
Character \(\chi\) \(=\) 2548.1941
Dual form 2548.2.bq.f.361.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.605874 q^{3} +(-3.48722 - 2.01335i) q^{5} -2.63292 q^{9} +3.01596i q^{11} +(1.03064 + 3.45511i) q^{13} +(2.11282 + 1.21984i) q^{15} +(2.53164 - 4.38494i) q^{17} +3.31908i q^{19} +(-2.45461 - 4.25150i) q^{23} +(5.60715 + 9.71187i) q^{25} +3.41284 q^{27} +(-1.30988 + 2.26878i) q^{29} +(-8.86474 + 5.11806i) q^{31} -1.82729i q^{33} +(-1.76903 + 1.02135i) q^{37} +(-0.624435 - 2.09336i) q^{39} +(-0.252355 - 0.145697i) q^{41} +(-0.581173 - 1.00662i) q^{43} +(9.18157 + 5.30098i) q^{45} +(-3.64039 - 2.10178i) q^{47} +(-1.53386 + 2.65672i) q^{51} +(-1.74405 - 3.02079i) q^{53} +(6.07218 - 10.5173i) q^{55} -2.01094i q^{57} +(5.84388 + 3.37397i) q^{59} +13.2920 q^{61} +(3.36229 - 14.1238i) q^{65} -4.13667i q^{67} +(1.48718 + 2.57588i) q^{69} +(-1.10708 + 0.639174i) q^{71} +(12.9146 - 7.45626i) q^{73} +(-3.39722 - 5.88417i) q^{75} +(3.45991 - 5.99274i) q^{79} +5.83100 q^{81} -10.4993i q^{83} +(-17.6568 + 10.1942i) q^{85} +(0.793622 - 1.37459i) q^{87} +(-0.511598 + 0.295371i) q^{89} +(5.37092 - 3.10090i) q^{93} +(6.68246 - 11.5744i) q^{95} +(4.94617 - 2.85568i) q^{97} -7.94077i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 2 q^{3} + 12 q^{9} + 4 q^{13} + 6 q^{15} + 10 q^{17} - 6 q^{23} + 5 q^{25} + 20 q^{27} + 2 q^{29} - 9 q^{31} + 18 q^{37} + 11 q^{39} + 9 q^{41} - 14 q^{43} - 30 q^{45} - 36 q^{47} + 2 q^{51} - 13 q^{53}+ \cdots + 18 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2548\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(885\) \(1275\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.605874 −0.349801 −0.174901 0.984586i \(-0.555960\pi\)
−0.174901 + 0.984586i \(0.555960\pi\)
\(4\) 0 0
\(5\) −3.48722 2.01335i −1.55953 0.900397i −0.997301 0.0734176i \(-0.976609\pi\)
−0.562232 0.826979i \(-0.690057\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −2.63292 −0.877639
\(10\) 0 0
\(11\) 3.01596i 0.909346i 0.890658 + 0.454673i \(0.150244\pi\)
−0.890658 + 0.454673i \(0.849756\pi\)
\(12\) 0 0
\(13\) 1.03064 + 3.45511i 0.285847 + 0.958275i
\(14\) 0 0
\(15\) 2.11282 + 1.21984i 0.545527 + 0.314960i
\(16\) 0 0
\(17\) 2.53164 4.38494i 0.614014 1.06350i −0.376543 0.926399i \(-0.622887\pi\)
0.990557 0.137104i \(-0.0437794\pi\)
\(18\) 0 0
\(19\) 3.31908i 0.761449i 0.924689 + 0.380724i \(0.124325\pi\)
−0.924689 + 0.380724i \(0.875675\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.45461 4.25150i −0.511821 0.886500i −0.999906 0.0137038i \(-0.995638\pi\)
0.488085 0.872796i \(-0.337696\pi\)
\(24\) 0 0
\(25\) 5.60715 + 9.71187i 1.12143 + 1.94237i
\(26\) 0 0
\(27\) 3.41284 0.656801
\(28\) 0 0
\(29\) −1.30988 + 2.26878i −0.243239 + 0.421302i −0.961635 0.274332i \(-0.911543\pi\)
0.718396 + 0.695634i \(0.244876\pi\)
\(30\) 0 0
\(31\) −8.86474 + 5.11806i −1.59216 + 0.919231i −0.599218 + 0.800586i \(0.704522\pi\)
−0.992937 + 0.118646i \(0.962145\pi\)
\(32\) 0 0
\(33\) 1.82729i 0.318090i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −1.76903 + 1.02135i −0.290826 + 0.167909i −0.638314 0.769776i \(-0.720368\pi\)
0.347488 + 0.937684i \(0.387035\pi\)
\(38\) 0 0
\(39\) −0.624435 2.09336i −0.0999897 0.335206i
\(40\) 0 0
\(41\) −0.252355 0.145697i −0.0394112 0.0227540i 0.480165 0.877178i \(-0.340577\pi\)
−0.519576 + 0.854424i \(0.673910\pi\)
\(42\) 0 0
\(43\) −0.581173 1.00662i −0.0886281 0.153508i 0.818303 0.574787i \(-0.194915\pi\)
−0.906931 + 0.421278i \(0.861582\pi\)
\(44\) 0 0
\(45\) 9.18157 + 5.30098i 1.36871 + 0.790224i
\(46\) 0 0
\(47\) −3.64039 2.10178i −0.531006 0.306576i 0.210420 0.977611i \(-0.432517\pi\)
−0.741426 + 0.671035i \(0.765850\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −1.53386 + 2.65672i −0.214783 + 0.372015i
\(52\) 0 0
\(53\) −1.74405 3.02079i −0.239564 0.414937i 0.721025 0.692909i \(-0.243671\pi\)
−0.960589 + 0.277972i \(0.910338\pi\)
\(54\) 0 0
\(55\) 6.07218 10.5173i 0.818772 1.41816i
\(56\) 0 0
\(57\) 2.01094i 0.266356i
\(58\) 0 0
\(59\) 5.84388 + 3.37397i 0.760809 + 0.439253i 0.829586 0.558379i \(-0.188576\pi\)
−0.0687772 + 0.997632i \(0.521910\pi\)
\(60\) 0 0
\(61\) 13.2920 1.70187 0.850936 0.525270i \(-0.176036\pi\)
0.850936 + 0.525270i \(0.176036\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 3.36229 14.1238i 0.417040 1.75184i
\(66\) 0 0
\(67\) 4.13667i 0.505375i −0.967548 0.252687i \(-0.918686\pi\)
0.967548 0.252687i \(-0.0813144\pi\)
\(68\) 0 0
\(69\) 1.48718 + 2.57588i 0.179036 + 0.310099i
\(70\) 0 0
\(71\) −1.10708 + 0.639174i −0.131387 + 0.0758560i −0.564253 0.825602i \(-0.690836\pi\)
0.432866 + 0.901458i \(0.357502\pi\)
\(72\) 0 0
\(73\) 12.9146 7.45626i 1.51154 0.872690i 0.511634 0.859204i \(-0.329041\pi\)
0.999909 0.0134859i \(-0.00429282\pi\)
\(74\) 0 0
\(75\) −3.39722 5.88417i −0.392278 0.679445i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 3.45991 5.99274i 0.389270 0.674236i −0.603081 0.797680i \(-0.706060\pi\)
0.992352 + 0.123444i \(0.0393938\pi\)
\(80\) 0 0
\(81\) 5.83100 0.647889
\(82\) 0 0
\(83\) 10.4993i 1.15245i −0.817292 0.576224i \(-0.804526\pi\)
0.817292 0.576224i \(-0.195474\pi\)
\(84\) 0 0
\(85\) −17.6568 + 10.1942i −1.91515 + 1.10571i
\(86\) 0 0
\(87\) 0.793622 1.37459i 0.0850852 0.147372i
\(88\) 0 0
\(89\) −0.511598 + 0.295371i −0.0542293 + 0.0313093i −0.526870 0.849946i \(-0.676634\pi\)
0.472640 + 0.881255i \(0.343301\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 5.37092 3.10090i 0.556938 0.321548i
\(94\) 0 0
\(95\) 6.68246 11.5744i 0.685606 1.18750i
\(96\) 0 0
\(97\) 4.94617 2.85568i 0.502208 0.289950i −0.227417 0.973797i \(-0.573028\pi\)
0.729625 + 0.683848i \(0.239695\pi\)
\(98\) 0 0
\(99\) 7.94077i 0.798077i
\(100\) 0 0
\(101\) −1.62019 −0.161215 −0.0806075 0.996746i \(-0.525686\pi\)
−0.0806075 + 0.996746i \(0.525686\pi\)
\(102\) 0 0
\(103\) −3.68130 + 6.37620i −0.362729 + 0.628265i −0.988409 0.151815i \(-0.951488\pi\)
0.625680 + 0.780080i \(0.284822\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −4.62841 8.01664i −0.447445 0.774998i 0.550774 0.834655i \(-0.314333\pi\)
−0.998219 + 0.0596565i \(0.980999\pi\)
\(108\) 0 0
\(109\) 9.86259 5.69417i 0.944665 0.545402i 0.0532452 0.998581i \(-0.483044\pi\)
0.891420 + 0.453179i \(0.149710\pi\)
\(110\) 0 0
\(111\) 1.07181 0.618808i 0.101731 0.0587347i
\(112\) 0 0
\(113\) −7.06719 12.2407i −0.664826 1.15151i −0.979333 0.202257i \(-0.935172\pi\)
0.314507 0.949255i \(-0.398161\pi\)
\(114\) 0 0
\(115\) 19.7679i 1.84337i
\(116\) 0 0
\(117\) −2.71358 9.09702i −0.250870 0.841020i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 1.90399 0.173090
\(122\) 0 0
\(123\) 0.152895 + 0.0882740i 0.0137861 + 0.00795940i
\(124\) 0 0
\(125\) 25.0231i 2.23813i
\(126\) 0 0
\(127\) −1.67517 + 2.90149i −0.148648 + 0.257465i −0.930728 0.365712i \(-0.880825\pi\)
0.782080 + 0.623178i \(0.214159\pi\)
\(128\) 0 0
\(129\) 0.352118 + 0.609886i 0.0310022 + 0.0536974i
\(130\) 0 0
\(131\) 6.08531 10.5401i 0.531676 0.920890i −0.467640 0.883919i \(-0.654896\pi\)
0.999316 0.0369713i \(-0.0117710\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −11.9013 6.87123i −1.02430 0.591381i
\(136\) 0 0
\(137\) 2.99901 + 1.73148i 0.256223 + 0.147930i 0.622610 0.782532i \(-0.286072\pi\)
−0.366388 + 0.930462i \(0.619406\pi\)
\(138\) 0 0
\(139\) −4.58975 7.94968i −0.389297 0.674283i 0.603058 0.797697i \(-0.293949\pi\)
−0.992355 + 0.123415i \(0.960615\pi\)
\(140\) 0 0
\(141\) 2.20562 + 1.27341i 0.185747 + 0.107241i
\(142\) 0 0
\(143\) −10.4205 + 3.10836i −0.871404 + 0.259934i
\(144\) 0 0
\(145\) 9.13569 5.27449i 0.758678 0.438023i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 6.18683i 0.506845i 0.967356 + 0.253422i \(0.0815563\pi\)
−0.967356 + 0.253422i \(0.918444\pi\)
\(150\) 0 0
\(151\) −17.0651 + 9.85256i −1.38874 + 0.801790i −0.993174 0.116646i \(-0.962786\pi\)
−0.395568 + 0.918437i \(0.629452\pi\)
\(152\) 0 0
\(153\) −6.66561 + 11.5452i −0.538882 + 0.933372i
\(154\) 0 0
\(155\) 41.2178 3.31069
\(156\) 0 0
\(157\) −9.33447 16.1678i −0.744972 1.29033i −0.950208 0.311617i \(-0.899129\pi\)
0.205236 0.978713i \(-0.434204\pi\)
\(158\) 0 0
\(159\) 1.05668 + 1.83022i 0.0837998 + 0.145146i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 18.8843i 1.47913i −0.673083 0.739567i \(-0.735030\pi\)
0.673083 0.739567i \(-0.264970\pi\)
\(164\) 0 0
\(165\) −3.67897 + 6.37217i −0.286408 + 0.496073i
\(166\) 0 0
\(167\) 12.3365 + 7.12250i 0.954630 + 0.551156i 0.894516 0.447036i \(-0.147520\pi\)
0.0601137 + 0.998192i \(0.480854\pi\)
\(168\) 0 0
\(169\) −10.8756 + 7.12192i −0.836583 + 0.547840i
\(170\) 0 0
\(171\) 8.73886i 0.668277i
\(172\) 0 0
\(173\) −19.9996 −1.52054 −0.760272 0.649605i \(-0.774934\pi\)
−0.760272 + 0.649605i \(0.774934\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −3.54066 2.04420i −0.266132 0.153651i
\(178\) 0 0
\(179\) 23.4022 1.74916 0.874580 0.484881i \(-0.161137\pi\)
0.874580 + 0.484881i \(0.161137\pi\)
\(180\) 0 0
\(181\) 5.15299 0.383019 0.191509 0.981491i \(-0.438662\pi\)
0.191509 + 0.981491i \(0.438662\pi\)
\(182\) 0 0
\(183\) −8.05330 −0.595317
\(184\) 0 0
\(185\) 8.22532 0.604738
\(186\) 0 0
\(187\) 13.2248 + 7.63534i 0.967092 + 0.558351i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 22.3386 1.61636 0.808182 0.588933i \(-0.200452\pi\)
0.808182 + 0.588933i \(0.200452\pi\)
\(192\) 0 0
\(193\) 10.3162i 0.742577i −0.928518 0.371288i \(-0.878916\pi\)
0.928518 0.371288i \(-0.121084\pi\)
\(194\) 0 0
\(195\) −2.03712 + 8.55722i −0.145881 + 0.612795i
\(196\) 0 0
\(197\) 23.1481 + 13.3646i 1.64923 + 0.952186i 0.977377 + 0.211505i \(0.0678364\pi\)
0.671857 + 0.740681i \(0.265497\pi\)
\(198\) 0 0
\(199\) −0.0439516 + 0.0761264i −0.00311565 + 0.00539646i −0.867579 0.497299i \(-0.834325\pi\)
0.864463 + 0.502696i \(0.167658\pi\)
\(200\) 0 0
\(201\) 2.50630i 0.176781i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0.586678 + 1.01616i 0.0409753 + 0.0709714i
\(206\) 0 0
\(207\) 6.46278 + 11.1939i 0.449194 + 0.778027i
\(208\) 0 0
\(209\) −10.0102 −0.692420
\(210\) 0 0
\(211\) −12.1986 + 21.1285i −0.839783 + 1.45455i 0.0502926 + 0.998735i \(0.483985\pi\)
−0.890076 + 0.455813i \(0.849349\pi\)
\(212\) 0 0
\(213\) 0.670752 0.387259i 0.0459592 0.0265345i
\(214\) 0 0
\(215\) 4.68042i 0.319202i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −7.82463 + 4.51755i −0.528740 + 0.305268i
\(220\) 0 0
\(221\) 17.7596 + 4.22784i 1.19464 + 0.284395i
\(222\) 0 0
\(223\) 2.25338 + 1.30099i 0.150897 + 0.0871206i 0.573548 0.819172i \(-0.305567\pi\)
−0.422650 + 0.906293i \(0.638900\pi\)
\(224\) 0 0
\(225\) −14.7632 25.5705i −0.984210 1.70470i
\(226\) 0 0
\(227\) 12.8164 + 7.39957i 0.850657 + 0.491127i 0.860872 0.508821i \(-0.169919\pi\)
−0.0102158 + 0.999948i \(0.503252\pi\)
\(228\) 0 0
\(229\) 2.79819 + 1.61554i 0.184910 + 0.106758i 0.589597 0.807697i \(-0.299286\pi\)
−0.404688 + 0.914455i \(0.632620\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 5.44152 9.42499i 0.356486 0.617452i −0.630885 0.775876i \(-0.717308\pi\)
0.987371 + 0.158424i \(0.0506414\pi\)
\(234\) 0 0
\(235\) 8.46324 + 14.6588i 0.552081 + 0.956232i
\(236\) 0 0
\(237\) −2.09627 + 3.63085i −0.136167 + 0.235849i
\(238\) 0 0
\(239\) 14.2791i 0.923639i 0.886974 + 0.461819i \(0.152803\pi\)
−0.886974 + 0.461819i \(0.847197\pi\)
\(240\) 0 0
\(241\) −21.9539 12.6751i −1.41417 0.816473i −0.418394 0.908266i \(-0.637407\pi\)
−0.995778 + 0.0917927i \(0.970740\pi\)
\(242\) 0 0
\(243\) −13.7714 −0.883433
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −11.4678 + 3.42076i −0.729677 + 0.217658i
\(248\) 0 0
\(249\) 6.36125i 0.403128i
\(250\) 0 0
\(251\) 10.6797 + 18.4977i 0.674094 + 1.16756i 0.976733 + 0.214460i \(0.0687991\pi\)
−0.302639 + 0.953105i \(0.597868\pi\)
\(252\) 0 0
\(253\) 12.8224 7.40299i 0.806135 0.465422i
\(254\) 0 0
\(255\) 10.6978 6.17638i 0.669922 0.386780i
\(256\) 0 0
\(257\) −4.53161 7.84898i −0.282674 0.489606i 0.689368 0.724411i \(-0.257888\pi\)
−0.972042 + 0.234805i \(0.924555\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 3.44881 5.97351i 0.213476 0.369751i
\(262\) 0 0
\(263\) −14.7945 −0.912269 −0.456134 0.889911i \(-0.650766\pi\)
−0.456134 + 0.889911i \(0.650766\pi\)
\(264\) 0 0
\(265\) 14.0455i 0.862811i
\(266\) 0 0
\(267\) 0.309964 0.178958i 0.0189695 0.0109520i
\(268\) 0 0
\(269\) 14.6738 25.4158i 0.894678 1.54963i 0.0604745 0.998170i \(-0.480739\pi\)
0.834203 0.551457i \(-0.185928\pi\)
\(270\) 0 0
\(271\) −9.80478 + 5.66079i −0.595598 + 0.343869i −0.767308 0.641279i \(-0.778404\pi\)
0.171710 + 0.985148i \(0.445071\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −29.2906 + 16.9109i −1.76629 + 1.01977i
\(276\) 0 0
\(277\) −9.30823 + 16.1223i −0.559277 + 0.968697i 0.438280 + 0.898839i \(0.355588\pi\)
−0.997557 + 0.0698581i \(0.977745\pi\)
\(278\) 0 0
\(279\) 23.3401 13.4754i 1.39734 0.806753i
\(280\) 0 0
\(281\) 9.63428i 0.574733i −0.957821 0.287366i \(-0.907220\pi\)
0.957821 0.287366i \(-0.0927797\pi\)
\(282\) 0 0
\(283\) 17.7476 1.05498 0.527492 0.849560i \(-0.323133\pi\)
0.527492 + 0.849560i \(0.323133\pi\)
\(284\) 0 0
\(285\) −4.04873 + 7.01260i −0.239826 + 0.415391i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −4.31844 7.47976i −0.254026 0.439986i
\(290\) 0 0
\(291\) −2.99676 + 1.73018i −0.175673 + 0.101425i
\(292\) 0 0
\(293\) 21.2670 12.2785i 1.24243 0.717320i 0.272845 0.962058i \(-0.412035\pi\)
0.969589 + 0.244738i \(0.0787021\pi\)
\(294\) 0 0
\(295\) −13.5859 23.5316i −0.791005 1.37006i
\(296\) 0 0
\(297\) 10.2930i 0.597259i
\(298\) 0 0
\(299\) 12.1596 12.8627i 0.703208 0.743869i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0.981632 0.0563933
\(304\) 0 0
\(305\) −46.3523 26.7615i −2.65413 1.53236i
\(306\) 0 0
\(307\) 3.59068i 0.204931i −0.994737 0.102466i \(-0.967327\pi\)
0.994737 0.102466i \(-0.0326731\pi\)
\(308\) 0 0
\(309\) 2.23040 3.86317i 0.126883 0.219768i
\(310\) 0 0
\(311\) −4.31915 7.48098i −0.244916 0.424208i 0.717192 0.696876i \(-0.245427\pi\)
−0.962108 + 0.272668i \(0.912094\pi\)
\(312\) 0 0
\(313\) −9.01786 + 15.6194i −0.509720 + 0.882861i 0.490217 + 0.871601i \(0.336918\pi\)
−0.999937 + 0.0112601i \(0.996416\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 12.6003 + 7.27477i 0.707702 + 0.408592i 0.810210 0.586140i \(-0.199353\pi\)
−0.102508 + 0.994732i \(0.532687\pi\)
\(318\) 0 0
\(319\) −6.84254 3.95055i −0.383109 0.221188i
\(320\) 0 0
\(321\) 2.80423 + 4.85707i 0.156517 + 0.271095i
\(322\) 0 0
\(323\) 14.5539 + 8.40272i 0.809803 + 0.467540i
\(324\) 0 0
\(325\) −27.7766 + 29.3827i −1.54077 + 1.62986i
\(326\) 0 0
\(327\) −5.97549 + 3.44995i −0.330445 + 0.190783i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 28.5151i 1.56733i 0.621182 + 0.783666i \(0.286653\pi\)
−0.621182 + 0.783666i \(0.713347\pi\)
\(332\) 0 0
\(333\) 4.65770 2.68912i 0.255240 0.147363i
\(334\) 0 0
\(335\) −8.32856 + 14.4255i −0.455038 + 0.788149i
\(336\) 0 0
\(337\) 6.02834 0.328385 0.164192 0.986428i \(-0.447498\pi\)
0.164192 + 0.986428i \(0.447498\pi\)
\(338\) 0 0
\(339\) 4.28183 + 7.41634i 0.232557 + 0.402801i
\(340\) 0 0
\(341\) −15.4359 26.7357i −0.835899 1.44782i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 11.9769i 0.644813i
\(346\) 0 0
\(347\) 2.16529 3.75039i 0.116239 0.201331i −0.802036 0.597276i \(-0.796250\pi\)
0.918274 + 0.395945i \(0.129583\pi\)
\(348\) 0 0
\(349\) 2.85466 + 1.64814i 0.152806 + 0.0882228i 0.574454 0.818537i \(-0.305215\pi\)
−0.421647 + 0.906760i \(0.638548\pi\)
\(350\) 0 0
\(351\) 3.51739 + 11.7917i 0.187745 + 0.629396i
\(352\) 0 0
\(353\) 20.5841i 1.09558i 0.836616 + 0.547790i \(0.184531\pi\)
−0.836616 + 0.547790i \(0.815469\pi\)
\(354\) 0 0
\(355\) 5.14752 0.273202
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 12.9348 + 7.46793i 0.682674 + 0.394142i 0.800862 0.598849i \(-0.204375\pi\)
−0.118188 + 0.992991i \(0.537708\pi\)
\(360\) 0 0
\(361\) 7.98372 0.420196
\(362\) 0 0
\(363\) −1.15358 −0.0605471
\(364\) 0 0
\(365\) −60.0482 −3.14307
\(366\) 0 0
\(367\) 5.01214 0.261631 0.130816 0.991407i \(-0.458240\pi\)
0.130816 + 0.991407i \(0.458240\pi\)
\(368\) 0 0
\(369\) 0.664429 + 0.383608i 0.0345888 + 0.0199698i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 17.0022 0.880338 0.440169 0.897915i \(-0.354918\pi\)
0.440169 + 0.897915i \(0.354918\pi\)
\(374\) 0 0
\(375\) 15.1608i 0.782902i
\(376\) 0 0
\(377\) −9.18889 2.18750i −0.473252 0.112662i
\(378\) 0 0
\(379\) 24.9003 + 14.3762i 1.27904 + 0.738454i 0.976672 0.214737i \(-0.0688894\pi\)
0.302369 + 0.953191i \(0.402223\pi\)
\(380\) 0 0
\(381\) 1.01494 1.75793i 0.0519972 0.0900617i
\(382\) 0 0
\(383\) 29.8622i 1.52589i 0.646465 + 0.762944i \(0.276247\pi\)
−0.646465 + 0.762944i \(0.723753\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 1.53018 + 2.65035i 0.0777834 + 0.134725i
\(388\) 0 0
\(389\) −4.17584 7.23276i −0.211723 0.366715i 0.740531 0.672023i \(-0.234574\pi\)
−0.952254 + 0.305307i \(0.901241\pi\)
\(390\) 0 0
\(391\) −24.8568 −1.25706
\(392\) 0 0
\(393\) −3.68693 + 6.38595i −0.185981 + 0.322129i
\(394\) 0 0
\(395\) −24.1310 + 13.9320i −1.21416 + 0.700996i
\(396\) 0 0
\(397\) 2.86213i 0.143646i 0.997417 + 0.0718232i \(0.0228817\pi\)
−0.997417 + 0.0718232i \(0.977118\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −14.6879 + 8.48009i −0.733481 + 0.423476i −0.819694 0.572801i \(-0.805857\pi\)
0.0862132 + 0.996277i \(0.472523\pi\)
\(402\) 0 0
\(403\) −26.8198 25.3538i −1.33599 1.26296i
\(404\) 0 0
\(405\) −20.3340 11.7398i −1.01040 0.583357i
\(406\) 0 0
\(407\) −3.08034 5.33531i −0.152687 0.264462i
\(408\) 0 0
\(409\) −8.05450 4.65027i −0.398269 0.229941i 0.287468 0.957790i \(-0.407187\pi\)
−0.685737 + 0.727849i \(0.740520\pi\)
\(410\) 0 0
\(411\) −1.81702 1.04906i −0.0896270 0.0517462i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −21.1387 + 36.6134i −1.03766 + 1.79728i
\(416\) 0 0
\(417\) 2.78081 + 4.81650i 0.136177 + 0.235865i
\(418\) 0 0
\(419\) −10.1471 + 17.5753i −0.495718 + 0.858608i −0.999988 0.00493765i \(-0.998428\pi\)
0.504270 + 0.863546i \(0.331762\pi\)
\(420\) 0 0
\(421\) 6.82905i 0.332827i −0.986056 0.166414i \(-0.946781\pi\)
0.986056 0.166414i \(-0.0532187\pi\)
\(422\) 0 0
\(423\) 9.58485 + 5.53381i 0.466031 + 0.269063i
\(424\) 0 0
\(425\) 56.7812 2.75429
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 6.31349 1.88327i 0.304818 0.0909252i
\(430\) 0 0
\(431\) 9.67781i 0.466164i −0.972457 0.233082i \(-0.925119\pi\)
0.972457 0.233082i \(-0.0748810\pi\)
\(432\) 0 0
\(433\) −9.67518 16.7579i −0.464960 0.805334i 0.534240 0.845333i \(-0.320598\pi\)
−0.999200 + 0.0399991i \(0.987264\pi\)
\(434\) 0 0
\(435\) −5.53507 + 3.19568i −0.265386 + 0.153221i
\(436\) 0 0
\(437\) 14.1111 8.14703i 0.675024 0.389725i
\(438\) 0 0
\(439\) 8.69109 + 15.0534i 0.414803 + 0.718460i 0.995408 0.0957255i \(-0.0305171\pi\)
−0.580605 + 0.814186i \(0.697184\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 6.61637 11.4599i 0.314353 0.544476i −0.664946 0.746891i \(-0.731546\pi\)
0.979300 + 0.202415i \(0.0648790\pi\)
\(444\) 0 0
\(445\) 2.37874 0.112763
\(446\) 0 0
\(447\) 3.74844i 0.177295i
\(448\) 0 0
\(449\) 6.12896 3.53855i 0.289243 0.166995i −0.348357 0.937362i \(-0.613260\pi\)
0.637601 + 0.770367i \(0.279927\pi\)
\(450\) 0 0
\(451\) 0.439416 0.761091i 0.0206913 0.0358384i
\(452\) 0 0
\(453\) 10.3393 5.96941i 0.485784 0.280467i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 28.9889 16.7367i 1.35604 0.782911i 0.366954 0.930239i \(-0.380401\pi\)
0.989088 + 0.147328i \(0.0470672\pi\)
\(458\) 0 0
\(459\) 8.64009 14.9651i 0.403285 0.698510i
\(460\) 0 0
\(461\) −7.21129 + 4.16344i −0.335863 + 0.193911i −0.658441 0.752632i \(-0.728784\pi\)
0.322578 + 0.946543i \(0.395451\pi\)
\(462\) 0 0
\(463\) 4.45810i 0.207186i −0.994620 0.103593i \(-0.966966\pi\)
0.994620 0.103593i \(-0.0330339\pi\)
\(464\) 0 0
\(465\) −24.9728 −1.15808
\(466\) 0 0
\(467\) 16.0477 27.7954i 0.742599 1.28622i −0.208710 0.977978i \(-0.566926\pi\)
0.951308 0.308241i \(-0.0997403\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 5.65551 + 9.79564i 0.260592 + 0.451359i
\(472\) 0 0
\(473\) 3.03593 1.75279i 0.139592 0.0805936i
\(474\) 0 0
\(475\) −32.2344 + 18.6106i −1.47902 + 0.853911i
\(476\) 0 0
\(477\) 4.59195 + 7.95348i 0.210251 + 0.364165i
\(478\) 0 0
\(479\) 19.3554i 0.884371i −0.896924 0.442185i \(-0.854203\pi\)
0.896924 0.442185i \(-0.145797\pi\)
\(480\) 0 0
\(481\) −5.35209 5.05955i −0.244034 0.230695i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −22.9979 −1.04428
\(486\) 0 0
\(487\) 5.07742 + 2.93145i 0.230080 + 0.132837i 0.610609 0.791932i \(-0.290925\pi\)
−0.380529 + 0.924769i \(0.624258\pi\)
\(488\) 0 0
\(489\) 11.4415i 0.517403i
\(490\) 0 0
\(491\) 5.13898 8.90098i 0.231919 0.401696i −0.726454 0.687215i \(-0.758833\pi\)
0.958373 + 0.285520i \(0.0921662\pi\)
\(492\) 0 0
\(493\) 6.63230 + 11.4875i 0.298704 + 0.517370i
\(494\) 0 0
\(495\) −15.9875 + 27.6912i −0.718587 + 1.24463i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 26.5363 + 15.3208i 1.18793 + 0.685851i 0.957835 0.287317i \(-0.0927634\pi\)
0.230094 + 0.973168i \(0.426097\pi\)
\(500\) 0 0
\(501\) −7.47438 4.31534i −0.333931 0.192795i
\(502\) 0 0
\(503\) −1.91528 3.31736i −0.0853981 0.147914i 0.820163 0.572130i \(-0.193883\pi\)
−0.905561 + 0.424216i \(0.860550\pi\)
\(504\) 0 0
\(505\) 5.64997 + 3.26201i 0.251420 + 0.145158i
\(506\) 0 0
\(507\) 6.58923 4.31499i 0.292638 0.191635i
\(508\) 0 0
\(509\) 16.3952 9.46577i 0.726704 0.419563i −0.0905109 0.995895i \(-0.528850\pi\)
0.817215 + 0.576333i \(0.195517\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 11.3275i 0.500120i
\(514\) 0 0
\(515\) 25.6750 14.8235i 1.13138 0.653201i
\(516\) 0 0
\(517\) 6.33888 10.9793i 0.278784 0.482868i
\(518\) 0 0
\(519\) 12.1173 0.531888
\(520\) 0 0
\(521\) −22.1534 38.3709i −0.970559 1.68106i −0.693873 0.720097i \(-0.744097\pi\)
−0.276686 0.960960i \(-0.589236\pi\)
\(522\) 0 0
\(523\) −11.4413 19.8169i −0.500293 0.866532i −1.00000 0.000337913i \(-0.999892\pi\)
0.499707 0.866194i \(-0.333441\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 51.8284i 2.25768i
\(528\) 0 0
\(529\) −0.550191 + 0.952958i −0.0239213 + 0.0414330i
\(530\) 0 0
\(531\) −15.3865 8.88338i −0.667716 0.385506i
\(532\) 0 0
\(533\) 0.243313 1.02207i 0.0105391 0.0442709i
\(534\) 0 0
\(535\) 37.2744i 1.61151i
\(536\) 0 0
\(537\) −14.1788 −0.611859
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 1.49131 + 0.861006i 0.0641163 + 0.0370175i 0.531715 0.846923i \(-0.321548\pi\)
−0.467599 + 0.883941i \(0.654881\pi\)
\(542\) 0 0
\(543\) −3.12206 −0.133981
\(544\) 0 0
\(545\) −45.8574 −1.96432
\(546\) 0 0
\(547\) 21.7554 0.930195 0.465098 0.885259i \(-0.346019\pi\)
0.465098 + 0.885259i \(0.346019\pi\)
\(548\) 0 0
\(549\) −34.9968 −1.49363
\(550\) 0 0
\(551\) −7.53025 4.34759i −0.320800 0.185214i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −4.98351 −0.211538
\(556\) 0 0
\(557\) 20.2913i 0.859768i −0.902884 0.429884i \(-0.858554\pi\)
0.902884 0.429884i \(-0.141446\pi\)
\(558\) 0 0
\(559\) 2.87901 3.04548i 0.121769 0.128810i
\(560\) 0 0
\(561\) −8.01255 4.62605i −0.338290 0.195312i
\(562\) 0 0
\(563\) 6.08156 10.5336i 0.256307 0.443937i −0.708943 0.705266i \(-0.750828\pi\)
0.965250 + 0.261329i \(0.0841609\pi\)
\(564\) 0 0
\(565\) 56.9149i 2.39443i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −2.60362 4.50961i −0.109150 0.189052i 0.806276 0.591539i \(-0.201479\pi\)
−0.915426 + 0.402486i \(0.868146\pi\)
\(570\) 0 0
\(571\) 7.11158 + 12.3176i 0.297611 + 0.515477i 0.975589 0.219605i \(-0.0704770\pi\)
−0.677978 + 0.735082i \(0.737144\pi\)
\(572\) 0 0
\(573\) −13.5344 −0.565406
\(574\) 0 0
\(575\) 27.5267 47.6776i 1.14794 1.98829i
\(576\) 0 0
\(577\) −8.49045 + 4.90196i −0.353462 + 0.204071i −0.666209 0.745765i \(-0.732084\pi\)
0.312747 + 0.949836i \(0.398751\pi\)
\(578\) 0 0
\(579\) 6.25032i 0.259754i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 9.11057 5.25999i 0.377321 0.217847i
\(584\) 0 0
\(585\) −8.85262 + 37.1867i −0.366011 + 1.53748i
\(586\) 0 0
\(587\) 14.4001 + 8.31388i 0.594354 + 0.343151i 0.766817 0.641865i \(-0.221839\pi\)
−0.172463 + 0.985016i \(0.555173\pi\)
\(588\) 0 0
\(589\) −16.9872 29.4228i −0.699947 1.21234i
\(590\) 0 0
\(591\) −14.0248 8.09724i −0.576904 0.333076i
\(592\) 0 0
\(593\) 27.2185 + 15.7146i 1.11773 + 0.645322i 0.940821 0.338905i \(-0.110056\pi\)
0.176910 + 0.984227i \(0.443390\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0.0266291 0.0461230i 0.00108986 0.00188769i
\(598\) 0 0
\(599\) −19.9208 34.5039i −0.813943 1.40979i −0.910084 0.414424i \(-0.863983\pi\)
0.0961406 0.995368i \(-0.469350\pi\)
\(600\) 0 0
\(601\) 4.75064 8.22836i 0.193783 0.335642i −0.752718 0.658343i \(-0.771258\pi\)
0.946501 + 0.322701i \(0.104591\pi\)
\(602\) 0 0
\(603\) 10.8915i 0.443536i
\(604\) 0 0
\(605\) −6.63964 3.83340i −0.269940 0.155850i
\(606\) 0 0
\(607\) −3.68363 −0.149514 −0.0747569 0.997202i \(-0.523818\pi\)
−0.0747569 + 0.997202i \(0.523818\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 3.50997 14.7441i 0.141998 0.596483i
\(612\) 0 0
\(613\) 28.1993i 1.13896i 0.822006 + 0.569479i \(0.192855\pi\)
−0.822006 + 0.569479i \(0.807145\pi\)
\(614\) 0 0
\(615\) −0.355453 0.615662i −0.0143332 0.0248259i
\(616\) 0 0
\(617\) −4.12127 + 2.37942i −0.165916 + 0.0957917i −0.580659 0.814147i \(-0.697205\pi\)
0.414743 + 0.909939i \(0.363872\pi\)
\(618\) 0 0
\(619\) 18.7796 10.8424i 0.754815 0.435793i −0.0726159 0.997360i \(-0.523135\pi\)
0.827431 + 0.561567i \(0.189801\pi\)
\(620\) 0 0
\(621\) −8.37717 14.5097i −0.336164 0.582254i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −22.3445 + 38.7018i −0.893779 + 1.54807i
\(626\) 0 0
\(627\) 6.06492 0.242210
\(628\) 0 0
\(629\) 10.3428i 0.412393i
\(630\) 0 0
\(631\) −32.0785 + 18.5205i −1.27702 + 0.737290i −0.976300 0.216421i \(-0.930562\pi\)
−0.300724 + 0.953711i \(0.597228\pi\)
\(632\) 0 0
\(633\) 7.39079 12.8012i 0.293757 0.508803i
\(634\) 0 0
\(635\) 11.6834 6.74542i 0.463642 0.267684i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 2.91486 1.68289i 0.115310 0.0665742i
\(640\) 0 0
\(641\) −0.310057 + 0.537034i −0.0122465 + 0.0212116i −0.872084 0.489357i \(-0.837232\pi\)
0.859837 + 0.510568i \(0.170565\pi\)
\(642\) 0 0
\(643\) −11.5598 + 6.67403i −0.455872 + 0.263198i −0.710307 0.703892i \(-0.751444\pi\)
0.254435 + 0.967090i \(0.418111\pi\)
\(644\) 0 0
\(645\) 2.83574i 0.111657i
\(646\) 0 0
\(647\) −6.52504 −0.256526 −0.128263 0.991740i \(-0.540940\pi\)
−0.128263 + 0.991740i \(0.540940\pi\)
\(648\) 0 0
\(649\) −10.1757 + 17.6249i −0.399433 + 0.691838i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 4.15183 + 7.19118i 0.162474 + 0.281413i 0.935755 0.352650i \(-0.114719\pi\)
−0.773282 + 0.634063i \(0.781386\pi\)
\(654\) 0 0
\(655\) −42.4417 + 24.5037i −1.65833 + 0.957439i
\(656\) 0 0
\(657\) −34.0031 + 19.6317i −1.32659 + 0.765906i
\(658\) 0 0
\(659\) 5.41342 + 9.37632i 0.210877 + 0.365250i 0.951989 0.306131i \(-0.0990347\pi\)
−0.741112 + 0.671381i \(0.765701\pi\)
\(660\) 0 0
\(661\) 16.0233i 0.623236i −0.950207 0.311618i \(-0.899129\pi\)
0.950207 0.311618i \(-0.100871\pi\)
\(662\) 0 0
\(663\) −10.7601 2.56154i −0.417888 0.0994818i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 12.8610 0.497978
\(668\) 0 0
\(669\) −1.36526 0.788235i −0.0527841 0.0304749i
\(670\) 0 0
\(671\) 40.0883i 1.54759i
\(672\) 0 0
\(673\) 7.99990 13.8562i 0.308373 0.534119i −0.669633 0.742692i \(-0.733549\pi\)
0.978007 + 0.208573i \(0.0668820\pi\)
\(674\) 0 0
\(675\) 19.1363 + 33.1450i 0.736556 + 1.27575i
\(676\) 0 0
\(677\) 4.80538 8.32316i 0.184686 0.319885i −0.758785 0.651341i \(-0.774207\pi\)
0.943471 + 0.331456i \(0.107540\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −7.76514 4.48321i −0.297561 0.171797i
\(682\) 0 0
\(683\) −15.8268 9.13760i −0.605595 0.349641i 0.165644 0.986186i \(-0.447030\pi\)
−0.771240 + 0.636545i \(0.780363\pi\)
\(684\) 0 0
\(685\) −6.97214 12.0761i −0.266392 0.461404i
\(686\) 0 0
\(687\) −1.69535 0.978812i −0.0646817 0.0373440i
\(688\) 0 0
\(689\) 8.63967 9.13923i 0.329145 0.348177i
\(690\) 0 0
\(691\) 19.3973 11.1990i 0.737908 0.426031i −0.0834002 0.996516i \(-0.526578\pi\)
0.821308 + 0.570485i \(0.193245\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 36.9631i 1.40209i
\(696\) 0 0
\(697\) −1.27774 + 0.737706i −0.0483980 + 0.0279426i
\(698\) 0 0
\(699\) −3.29688 + 5.71036i −0.124699 + 0.215985i
\(700\) 0 0
\(701\) −25.9923 −0.981715 −0.490858 0.871240i \(-0.663317\pi\)
−0.490858 + 0.871240i \(0.663317\pi\)
\(702\) 0 0
\(703\) −3.38993 5.87154i −0.127854 0.221449i
\(704\) 0 0
\(705\) −5.12765 8.88136i −0.193119 0.334491i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 1.43956i 0.0540640i 0.999635 + 0.0270320i \(0.00860560\pi\)
−0.999635 + 0.0270320i \(0.991394\pi\)
\(710\) 0 0
\(711\) −9.10966 + 15.7784i −0.341639 + 0.591736i
\(712\) 0 0
\(713\) 43.5189 + 25.1257i 1.62980 + 0.940964i
\(714\) 0 0
\(715\) 42.5967 + 10.1405i 1.59303 + 0.379234i
\(716\) 0 0
\(717\) 8.65134i 0.323090i
\(718\) 0 0
\(719\) −40.8771 −1.52446 −0.762228 0.647308i \(-0.775895\pi\)
−0.762228 + 0.647308i \(0.775895\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 13.3013 + 7.67949i 0.494680 + 0.285603i
\(724\) 0 0
\(725\) −29.3788 −1.09110
\(726\) 0 0
\(727\) 22.0673 0.818432 0.409216 0.912438i \(-0.365802\pi\)
0.409216 + 0.912438i \(0.365802\pi\)
\(728\) 0 0
\(729\) −9.14930 −0.338863
\(730\) 0 0
\(731\) −5.88529 −0.217675
\(732\) 0 0
\(733\) 10.1099 + 5.83696i 0.373418 + 0.215593i 0.674951 0.737863i \(-0.264165\pi\)
−0.301533 + 0.953456i \(0.597498\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 12.4760 0.459560
\(738\) 0 0
\(739\) 29.1737i 1.07317i −0.843846 0.536585i \(-0.819714\pi\)
0.843846 0.536585i \(-0.180286\pi\)
\(740\) 0 0
\(741\) 6.94803 2.07255i 0.255242 0.0761370i
\(742\) 0 0
\(743\) 20.1398 + 11.6277i 0.738858 + 0.426580i 0.821654 0.569987i \(-0.193052\pi\)
−0.0827959 + 0.996567i \(0.526385\pi\)
\(744\) 0 0
\(745\) 12.4562 21.5749i 0.456362 0.790441i
\(746\) 0 0
\(747\) 27.6438i 1.01143i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −16.8130 29.1210i −0.613517 1.06264i −0.990643 0.136480i \(-0.956421\pi\)
0.377126 0.926162i \(-0.376912\pi\)
\(752\) 0 0
\(753\) −6.47052 11.2073i −0.235799 0.408416i
\(754\) 0 0
\(755\) 79.3466 2.88772
\(756\) 0 0
\(757\) 10.7585 18.6343i 0.391025 0.677275i −0.601560 0.798828i \(-0.705454\pi\)
0.992585 + 0.121552i \(0.0387872\pi\)
\(758\) 0 0
\(759\) −7.76873 + 4.48528i −0.281987 + 0.162805i
\(760\) 0 0
\(761\) 1.30767i 0.0474029i −0.999719 0.0237014i \(-0.992455\pi\)
0.999719 0.0237014i \(-0.00754511\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 46.4889 26.8404i 1.68081 0.970416i
\(766\) 0 0
\(767\) −5.63451 + 23.6686i −0.203451 + 0.854624i
\(768\) 0 0
\(769\) 31.1392 + 17.9782i 1.12291 + 0.648312i 0.942142 0.335214i \(-0.108809\pi\)
0.180767 + 0.983526i \(0.442142\pi\)
\(770\) 0 0
\(771\) 2.74558 + 4.75549i 0.0988798 + 0.171265i
\(772\) 0 0
\(773\) −37.8302 21.8413i −1.36066 0.785576i −0.370947 0.928654i \(-0.620967\pi\)
−0.989711 + 0.143078i \(0.954300\pi\)
\(774\) 0 0
\(775\) −99.4119 57.3955i −3.57098 2.06171i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0.483580 0.837584i 0.0173260 0.0300096i
\(780\) 0 0
\(781\) −1.92772 3.33892i −0.0689794 0.119476i
\(782\) 0 0
\(783\) −4.47041 + 7.74297i −0.159759 + 0.276711i
\(784\) 0 0
\(785\) 75.1742i 2.68308i
\(786\) 0 0
\(787\) 16.8292 + 9.71634i 0.599896 + 0.346350i 0.769001 0.639248i \(-0.220754\pi\)
−0.169105 + 0.985598i \(0.554088\pi\)
\(788\) 0 0
\(789\) 8.96361 0.319113
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 13.6993 + 45.9255i 0.486475 + 1.63086i
\(794\) 0 0
\(795\) 8.50983i 0.301813i
\(796\) 0 0
\(797\) −8.40446 14.5570i −0.297701 0.515634i 0.677908 0.735146i \(-0.262887\pi\)
−0.975610 + 0.219513i \(0.929553\pi\)
\(798\) 0 0
\(799\) −18.4323 + 10.6419i −0.652090 + 0.376484i
\(800\) 0 0
\(801\) 1.34700 0.777689i 0.0475938 0.0274783i
\(802\) 0 0
\(803\) 22.4878 + 38.9500i 0.793577 + 1.37452i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −8.89047 + 15.3988i −0.312960 + 0.542062i
\(808\) 0 0
\(809\) −19.3130 −0.679008 −0.339504 0.940605i \(-0.610259\pi\)
−0.339504 + 0.940605i \(0.610259\pi\)
\(810\) 0 0
\(811\) 21.4951i 0.754795i 0.926051 + 0.377397i \(0.123181\pi\)
−0.926051 + 0.377397i \(0.876819\pi\)
\(812\) 0 0
\(813\) 5.94046 3.42973i 0.208341 0.120286i
\(814\) 0 0
\(815\) −38.0207 + 65.8538i −1.33181 + 2.30676i
\(816\) 0 0
\(817\) 3.34105 1.92896i 0.116889 0.0674857i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −42.1884 + 24.3575i −1.47239 + 0.850082i −0.999518 0.0310515i \(-0.990114\pi\)
−0.472868 + 0.881134i \(0.656781\pi\)
\(822\) 0 0
\(823\) 9.05247 15.6793i 0.315549 0.546547i −0.664005 0.747728i \(-0.731145\pi\)
0.979554 + 0.201181i \(0.0644780\pi\)
\(824\) 0 0
\(825\) 17.7464 10.2459i 0.617850 0.356716i
\(826\) 0 0
\(827\) 43.6958i 1.51945i −0.650244 0.759726i \(-0.725333\pi\)
0.650244 0.759726i \(-0.274667\pi\)
\(828\) 0 0
\(829\) 30.4929 1.05906 0.529530 0.848291i \(-0.322368\pi\)
0.529530 + 0.848291i \(0.322368\pi\)
\(830\) 0 0
\(831\) 5.63961 9.76810i 0.195636 0.338852i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −28.6802 49.6755i −0.992518 1.71909i
\(836\) 0 0
\(837\) −30.2539 + 17.4671i −1.04573 + 0.603752i
\(838\) 0 0
\(839\) 27.3088 15.7668i 0.942806 0.544329i 0.0519670 0.998649i \(-0.483451\pi\)
0.890839 + 0.454320i \(0.150118\pi\)
\(840\) 0 0
\(841\) 11.0684 + 19.1711i 0.381670 + 0.661072i
\(842\) 0 0
\(843\) 5.83716i 0.201042i
\(844\) 0 0
\(845\) 52.2645 2.93940i 1.79795 0.101118i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −10.7528 −0.369035
\(850\) 0 0
\(851\) 8.68453 + 5.01402i 0.297702 + 0.171878i
\(852\) 0 0
\(853\) 49.9618i 1.71066i 0.518085 + 0.855329i \(0.326645\pi\)
−0.518085 + 0.855329i \(0.673355\pi\)
\(854\) 0 0
\(855\) −17.5944 + 30.4743i −0.601715 + 1.04220i
\(856\) 0 0
\(857\) 20.4955 + 35.4993i 0.700113 + 1.21263i 0.968426 + 0.249300i \(0.0802006\pi\)
−0.268313 + 0.963332i \(0.586466\pi\)
\(858\) 0 0
\(859\) −22.7071 + 39.3298i −0.774756 + 1.34192i 0.160175 + 0.987089i \(0.448794\pi\)
−0.934931 + 0.354829i \(0.884539\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −45.5827 26.3172i −1.55165 0.895848i −0.998007 0.0630969i \(-0.979902\pi\)
−0.553647 0.832751i \(-0.686764\pi\)
\(864\) 0 0
\(865\) 69.7432 + 40.2662i 2.37134 + 1.36909i
\(866\) 0 0
\(867\) 2.61643 + 4.53179i 0.0888587 + 0.153908i
\(868\) 0 0
\(869\) 18.0739 + 10.4350i 0.613114 + 0.353982i
\(870\) 0 0
\(871\) 14.2926 4.26340i 0.484288 0.144460i
\(872\) 0 0
\(873\) −13.0229 + 7.51876i −0.440757 + 0.254471i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 11.7224i 0.395838i −0.980218 0.197919i \(-0.936582\pi\)
0.980218 0.197919i \(-0.0634183\pi\)
\(878\) 0 0
\(879\) −12.8851 + 7.43924i −0.434605 + 0.250919i
\(880\) 0 0
\(881\) 14.5273 25.1619i 0.489435 0.847727i −0.510491 0.859883i \(-0.670536\pi\)
0.999926 + 0.0121562i \(0.00386953\pi\)
\(882\) 0 0
\(883\) −41.9709 −1.41243 −0.706216 0.707996i \(-0.749599\pi\)
−0.706216 + 0.707996i \(0.749599\pi\)
\(884\) 0 0
\(885\) 8.23137 + 14.2572i 0.276695 + 0.479249i
\(886\) 0 0
\(887\) 18.4327 + 31.9265i 0.618911 + 1.07199i 0.989685 + 0.143262i \(0.0457592\pi\)
−0.370774 + 0.928723i \(0.620907\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 17.5861i 0.589155i
\(892\) 0 0
\(893\) 6.97597 12.0827i 0.233442 0.404333i
\(894\) 0 0
\(895\) −81.6086 47.1167i −2.72787 1.57494i
\(896\) 0 0
\(897\) −7.36719 + 7.79317i −0.245983 + 0.260206i
\(898\) 0 0
\(899\) 26.8162i 0.894370i
\(900\) 0 0
\(901\) −17.6613 −0.588383
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −17.9696 10.3748i −0.597331 0.344869i
\(906\) 0 0
\(907\) 31.0746 1.03181 0.515907 0.856645i \(-0.327455\pi\)
0.515907 + 0.856645i \(0.327455\pi\)
\(908\) 0 0
\(909\) 4.26583 0.141489
\(910\) 0 0
\(911\) 12.7180 0.421365 0.210682 0.977555i \(-0.432431\pi\)
0.210682 + 0.977555i \(0.432431\pi\)
\(912\) 0 0
\(913\) 31.6654 1.04797
\(914\) 0 0
\(915\) 28.0837 + 16.2141i 0.928417 + 0.536022i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −10.5876 −0.349253 −0.174627 0.984635i \(-0.555872\pi\)
−0.174627 + 0.984635i \(0.555872\pi\)
\(920\) 0 0
\(921\) 2.17550i 0.0716852i
\(922\) 0 0
\(923\) −3.34942 3.16634i −0.110247 0.104221i
\(924\) 0 0
\(925\) −19.8384 11.4537i −0.652282 0.376595i
\(926\) 0 0
\(927\) 9.69255 16.7880i 0.318345 0.551390i
\(928\) 0 0
\(929\) 15.4183i 0.505857i −0.967485 0.252928i \(-0.918606\pi\)
0.967485 0.252928i \(-0.0813937\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 2.61686 + 4.53253i 0.0856721 + 0.148388i
\(934\) 0 0
\(935\) −30.7452 53.2522i −1.00548 1.74153i
\(936\) 0 0
\(937\) 1.66353 0.0543452 0.0271726 0.999631i \(-0.491350\pi\)
0.0271726 + 0.999631i \(0.491350\pi\)
\(938\) 0 0
\(939\) 5.46369 9.46339i 0.178301 0.308826i
\(940\) 0 0
\(941\) 25.8392 14.9183i 0.842335 0.486322i −0.0157224 0.999876i \(-0.505005\pi\)
0.858057 + 0.513554i \(0.171671\pi\)
\(942\) 0 0
\(943\) 1.43052i 0.0465840i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 5.43043 3.13526i 0.176465 0.101882i −0.409166 0.912460i \(-0.634180\pi\)
0.585631 + 0.810578i \(0.300847\pi\)
\(948\) 0 0
\(949\) 39.0725 + 36.9368i 1.26835 + 1.19902i
\(950\) 0 0
\(951\) −7.63418 4.40759i −0.247555 0.142926i
\(952\) 0 0
\(953\) 10.6219 + 18.3977i 0.344078 + 0.595960i 0.985186 0.171491i \(-0.0548583\pi\)
−0.641108 + 0.767451i \(0.721525\pi\)
\(954\) 0 0
\(955\) −77.8996 44.9754i −2.52077 1.45537i
\(956\) 0 0
\(957\) 4.14572 + 2.39353i 0.134012 + 0.0773719i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 36.8891 63.8938i 1.18997 2.06109i
\(962\) 0 0
\(963\) 12.1862 + 21.1072i 0.392696 + 0.680169i
\(964\) 0 0
\(965\) −20.7701 + 35.9749i −0.668614 + 1.15807i
\(966\) 0 0
\(967\) 28.1083i 0.903902i −0.892043 0.451951i \(-0.850728\pi\)
0.892043 0.451951i \(-0.149272\pi\)
\(968\) 0 0
\(969\) −8.81785 5.09099i −0.283270 0.163546i
\(970\) 0 0
\(971\) −19.0275 −0.610621 −0.305310 0.952253i \(-0.598760\pi\)
−0.305310 + 0.952253i \(0.598760\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 16.8291 17.8022i 0.538964 0.570127i
\(976\) 0 0
\(977\) 60.5225i 1.93629i −0.250400 0.968143i \(-0.580562\pi\)
0.250400 0.968143i \(-0.419438\pi\)
\(978\) 0 0
\(979\) −0.890828 1.54296i −0.0284710 0.0493132i
\(980\) 0 0
\(981\) −25.9674 + 14.9923i −0.829075 + 0.478666i
\(982\) 0 0
\(983\) −38.4381 + 22.1922i −1.22598 + 0.707823i −0.966188 0.257840i \(-0.916989\pi\)
−0.259797 + 0.965663i \(0.583656\pi\)
\(984\) 0 0
\(985\) −53.8151 93.2104i −1.71469 2.96993i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −2.85310 + 4.94172i −0.0907234 + 0.157138i
\(990\) 0 0
\(991\) 45.4599 1.44408 0.722040 0.691851i \(-0.243205\pi\)
0.722040 + 0.691851i \(0.243205\pi\)
\(992\) 0 0
\(993\) 17.2766i 0.548255i
\(994\) 0 0
\(995\) 0.306538 0.176980i 0.00971791 0.00561064i
\(996\) 0 0
\(997\) 16.3250 28.2758i 0.517018 0.895502i −0.482786 0.875738i \(-0.660375\pi\)
0.999805 0.0197639i \(-0.00629145\pi\)
\(998\) 0 0
\(999\) −6.03740 + 3.48569i −0.191015 + 0.110283i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2548.2.bq.f.1941.4 18
7.2 even 3 2548.2.u.d.589.6 18
7.3 odd 6 364.2.bb.a.277.4 yes 18
7.4 even 3 2548.2.bb.f.1733.6 18
7.5 odd 6 2548.2.u.e.589.4 18
7.6 odd 2 364.2.bq.a.121.6 yes 18
13.10 even 6 2548.2.bb.f.569.6 18
21.17 even 6 3276.2.hi.i.1369.9 18
21.20 even 2 3276.2.fe.i.2305.1 18
91.10 odd 6 364.2.bq.a.361.6 yes 18
91.23 even 6 2548.2.u.d.1765.6 18
91.62 odd 6 364.2.bb.a.205.4 18
91.75 odd 6 2548.2.u.e.1765.4 18
91.88 even 6 inner 2548.2.bq.f.361.4 18
273.62 even 6 3276.2.hi.i.1297.9 18
273.101 even 6 3276.2.fe.i.361.1 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
364.2.bb.a.205.4 18 91.62 odd 6
364.2.bb.a.277.4 yes 18 7.3 odd 6
364.2.bq.a.121.6 yes 18 7.6 odd 2
364.2.bq.a.361.6 yes 18 91.10 odd 6
2548.2.u.d.589.6 18 7.2 even 3
2548.2.u.d.1765.6 18 91.23 even 6
2548.2.u.e.589.4 18 7.5 odd 6
2548.2.u.e.1765.4 18 91.75 odd 6
2548.2.bb.f.569.6 18 13.10 even 6
2548.2.bb.f.1733.6 18 7.4 even 3
2548.2.bq.f.361.4 18 91.88 even 6 inner
2548.2.bq.f.1941.4 18 1.1 even 1 trivial
3276.2.fe.i.361.1 18 273.101 even 6
3276.2.fe.i.2305.1 18 21.20 even 2
3276.2.hi.i.1297.9 18 273.62 even 6
3276.2.hi.i.1369.9 18 21.17 even 6