Properties

Label 2548.2.u.d.589.6
Level $2548$
Weight $2$
Character 2548.589
Analytic conductor $20.346$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2548,2,Mod(589,2548)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2548, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2548.589");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2548 = 2^{2} \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2548.u (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.3458824350\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(9\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - x^{17} + 17 x^{16} - 6 x^{15} + 188 x^{14} - 49 x^{13} + 1116 x^{12} - x^{11} + 4649 x^{10} + \cdots + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 364)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 589.6
Root \(-0.302937 + 0.524702i\) of defining polynomial
Character \(\chi\) \(=\) 2548.589
Dual form 2548.2.u.d.1765.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.302937 - 0.524702i) q^{3} +4.02670i q^{5} +(1.31646 + 2.28017i) q^{9} +(-2.61190 - 1.50798i) q^{11} +(1.03064 + 3.45511i) q^{13} +(2.11282 + 1.21984i) q^{15} +(2.53164 + 4.38494i) q^{17} +(2.87441 - 1.65954i) q^{19} +(-2.45461 + 4.25150i) q^{23} -11.2143 q^{25} +3.41284 q^{27} +(-1.30988 + 2.26878i) q^{29} -10.2361i q^{31} +(-1.58248 + 0.913645i) q^{33} +(1.76903 + 1.02135i) q^{37} +(2.12512 + 0.505904i) q^{39} +(-0.252355 - 0.145697i) q^{41} +(-0.581173 - 1.00662i) q^{43} +(-9.18157 + 5.30098i) q^{45} +4.20356i q^{47} +3.06771 q^{51} +3.48810 q^{53} +(6.07218 - 10.5173i) q^{55} -2.01094i q^{57} +(-5.84388 + 3.37397i) q^{59} +(-6.64602 - 11.5112i) q^{61} +(-13.9127 + 4.15006i) q^{65} +(3.58246 + 2.06833i) q^{67} +(1.48718 + 2.57588i) q^{69} +(-1.10708 + 0.639174i) q^{71} +14.9125i q^{73} +(-3.39722 + 5.88417i) q^{75} -6.91982 q^{79} +(-2.91550 + 5.04980i) q^{81} -10.4993i q^{83} +(-17.6568 + 10.1942i) q^{85} +(0.793622 + 1.37459i) q^{87} +(0.511598 + 0.295371i) q^{89} +(-5.37092 - 3.10090i) q^{93} +(6.68246 + 11.5744i) q^{95} +(4.94617 - 2.85568i) q^{97} -7.94077i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - q^{3} - 6 q^{9} + 6 q^{11} + 4 q^{13} + 6 q^{15} + 10 q^{17} + 21 q^{19} - 6 q^{23} - 10 q^{25} + 20 q^{27} + 2 q^{29} + 12 q^{33} - 18 q^{37} - 25 q^{39} + 9 q^{41} - 14 q^{43} + 30 q^{45} - 4 q^{51}+ \cdots + 18 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2548\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(885\) \(1275\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.302937 0.524702i 0.174901 0.302937i −0.765226 0.643761i \(-0.777373\pi\)
0.940127 + 0.340825i \(0.110706\pi\)
\(4\) 0 0
\(5\) 4.02670i 1.80079i 0.435069 + 0.900397i \(0.356724\pi\)
−0.435069 + 0.900397i \(0.643276\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 1.31646 + 2.28017i 0.438819 + 0.760058i
\(10\) 0 0
\(11\) −2.61190 1.50798i −0.787517 0.454673i 0.0515709 0.998669i \(-0.483577\pi\)
−0.839088 + 0.543996i \(0.816911\pi\)
\(12\) 0 0
\(13\) 1.03064 + 3.45511i 0.285847 + 0.958275i
\(14\) 0 0
\(15\) 2.11282 + 1.21984i 0.545527 + 0.314960i
\(16\) 0 0
\(17\) 2.53164 + 4.38494i 0.614014 + 1.06350i 0.990557 + 0.137104i \(0.0437794\pi\)
−0.376543 + 0.926399i \(0.622887\pi\)
\(18\) 0 0
\(19\) 2.87441 1.65954i 0.659434 0.380724i −0.132627 0.991166i \(-0.542341\pi\)
0.792061 + 0.610442i \(0.209008\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.45461 + 4.25150i −0.511821 + 0.886500i 0.488085 + 0.872796i \(0.337696\pi\)
−0.999906 + 0.0137038i \(0.995638\pi\)
\(24\) 0 0
\(25\) −11.2143 −2.24286
\(26\) 0 0
\(27\) 3.41284 0.656801
\(28\) 0 0
\(29\) −1.30988 + 2.26878i −0.243239 + 0.421302i −0.961635 0.274332i \(-0.911543\pi\)
0.718396 + 0.695634i \(0.244876\pi\)
\(30\) 0 0
\(31\) 10.2361i 1.83846i −0.393718 0.919231i \(-0.628811\pi\)
0.393718 0.919231i \(-0.371189\pi\)
\(32\) 0 0
\(33\) −1.58248 + 0.913645i −0.275474 + 0.159045i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 1.76903 + 1.02135i 0.290826 + 0.167909i 0.638314 0.769776i \(-0.279632\pi\)
−0.347488 + 0.937684i \(0.612965\pi\)
\(38\) 0 0
\(39\) 2.12512 + 0.505904i 0.340292 + 0.0810094i
\(40\) 0 0
\(41\) −0.252355 0.145697i −0.0394112 0.0227540i 0.480165 0.877178i \(-0.340577\pi\)
−0.519576 + 0.854424i \(0.673910\pi\)
\(42\) 0 0
\(43\) −0.581173 1.00662i −0.0886281 0.153508i 0.818303 0.574787i \(-0.194915\pi\)
−0.906931 + 0.421278i \(0.861582\pi\)
\(44\) 0 0
\(45\) −9.18157 + 5.30098i −1.36871 + 0.790224i
\(46\) 0 0
\(47\) 4.20356i 0.613152i 0.951846 + 0.306576i \(0.0991834\pi\)
−0.951846 + 0.306576i \(0.900817\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 3.06771 0.429566
\(52\) 0 0
\(53\) 3.48810 0.479128 0.239564 0.970881i \(-0.422995\pi\)
0.239564 + 0.970881i \(0.422995\pi\)
\(54\) 0 0
\(55\) 6.07218 10.5173i 0.818772 1.41816i
\(56\) 0 0
\(57\) 2.01094i 0.266356i
\(58\) 0 0
\(59\) −5.84388 + 3.37397i −0.760809 + 0.439253i −0.829586 0.558379i \(-0.811424\pi\)
0.0687772 + 0.997632i \(0.478090\pi\)
\(60\) 0 0
\(61\) −6.64602 11.5112i −0.850936 1.47386i −0.880365 0.474297i \(-0.842702\pi\)
0.0294290 0.999567i \(-0.490631\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −13.9127 + 4.15006i −1.72566 + 0.514752i
\(66\) 0 0
\(67\) 3.58246 + 2.06833i 0.437667 + 0.252687i 0.702608 0.711578i \(-0.252019\pi\)
−0.264940 + 0.964265i \(0.585352\pi\)
\(68\) 0 0
\(69\) 1.48718 + 2.57588i 0.179036 + 0.310099i
\(70\) 0 0
\(71\) −1.10708 + 0.639174i −0.131387 + 0.0758560i −0.564253 0.825602i \(-0.690836\pi\)
0.432866 + 0.901458i \(0.357502\pi\)
\(72\) 0 0
\(73\) 14.9125i 1.74538i 0.488275 + 0.872690i \(0.337626\pi\)
−0.488275 + 0.872690i \(0.662374\pi\)
\(74\) 0 0
\(75\) −3.39722 + 5.88417i −0.392278 + 0.679445i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −6.91982 −0.778541 −0.389270 0.921124i \(-0.627273\pi\)
−0.389270 + 0.921124i \(0.627273\pi\)
\(80\) 0 0
\(81\) −2.91550 + 5.04980i −0.323945 + 0.561088i
\(82\) 0 0
\(83\) 10.4993i 1.15245i −0.817292 0.576224i \(-0.804526\pi\)
0.817292 0.576224i \(-0.195474\pi\)
\(84\) 0 0
\(85\) −17.6568 + 10.1942i −1.91515 + 1.10571i
\(86\) 0 0
\(87\) 0.793622 + 1.37459i 0.0850852 + 0.147372i
\(88\) 0 0
\(89\) 0.511598 + 0.295371i 0.0542293 + 0.0313093i 0.526870 0.849946i \(-0.323366\pi\)
−0.472640 + 0.881255i \(0.656699\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −5.37092 3.10090i −0.556938 0.321548i
\(94\) 0 0
\(95\) 6.68246 + 11.5744i 0.685606 + 1.18750i
\(96\) 0 0
\(97\) 4.94617 2.85568i 0.502208 0.289950i −0.227417 0.973797i \(-0.573028\pi\)
0.729625 + 0.683848i \(0.239695\pi\)
\(98\) 0 0
\(99\) 7.94077i 0.798077i
\(100\) 0 0
\(101\) 0.810096 1.40313i 0.0806075 0.139616i −0.822904 0.568181i \(-0.807647\pi\)
0.903511 + 0.428565i \(0.140981\pi\)
\(102\) 0 0
\(103\) 7.36260 0.725458 0.362729 0.931895i \(-0.381845\pi\)
0.362729 + 0.931895i \(0.381845\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −4.62841 + 8.01664i −0.447445 + 0.774998i −0.998219 0.0596565i \(-0.980999\pi\)
0.550774 + 0.834655i \(0.314333\pi\)
\(108\) 0 0
\(109\) 11.3883i 1.09080i 0.838174 + 0.545402i \(0.183623\pi\)
−0.838174 + 0.545402i \(0.816377\pi\)
\(110\) 0 0
\(111\) 1.07181 0.618808i 0.101731 0.0587347i
\(112\) 0 0
\(113\) −7.06719 12.2407i −0.664826 1.15151i −0.979333 0.202257i \(-0.935172\pi\)
0.314507 0.949255i \(-0.398161\pi\)
\(114\) 0 0
\(115\) −17.1195 9.88396i −1.59640 0.921684i
\(116\) 0 0
\(117\) −6.52146 + 6.89854i −0.602909 + 0.637770i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −0.951995 1.64890i −0.0865450 0.149900i
\(122\) 0 0
\(123\) −0.152895 + 0.0882740i −0.0137861 + 0.00795940i
\(124\) 0 0
\(125\) 25.0231i 2.23813i
\(126\) 0 0
\(127\) −1.67517 + 2.90149i −0.148648 + 0.257465i −0.930728 0.365712i \(-0.880825\pi\)
0.782080 + 0.623178i \(0.214159\pi\)
\(128\) 0 0
\(129\) −0.704235 −0.0620044
\(130\) 0 0
\(131\) −12.1706 −1.06335 −0.531676 0.846948i \(-0.678438\pi\)
−0.531676 + 0.846948i \(0.678438\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 13.7425i 1.18276i
\(136\) 0 0
\(137\) −2.99901 + 1.73148i −0.256223 + 0.147930i −0.622610 0.782532i \(-0.713928\pi\)
0.366388 + 0.930462i \(0.380594\pi\)
\(138\) 0 0
\(139\) −4.58975 7.94968i −0.389297 0.674283i 0.603058 0.797697i \(-0.293949\pi\)
−0.992355 + 0.123415i \(0.960615\pi\)
\(140\) 0 0
\(141\) 2.20562 + 1.27341i 0.185747 + 0.107241i
\(142\) 0 0
\(143\) 2.51832 10.5786i 0.210593 0.884625i
\(144\) 0 0
\(145\) −9.13569 5.27449i −0.758678 0.438023i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 5.35795 3.09341i 0.438941 0.253422i −0.264208 0.964466i \(-0.585110\pi\)
0.703148 + 0.711043i \(0.251777\pi\)
\(150\) 0 0
\(151\) 19.7051i 1.60358i −0.597605 0.801790i \(-0.703881\pi\)
0.597605 0.801790i \(-0.296119\pi\)
\(152\) 0 0
\(153\) −6.66561 + 11.5452i −0.538882 + 0.933372i
\(154\) 0 0
\(155\) 41.2178 3.31069
\(156\) 0 0
\(157\) 18.6689 1.48994 0.744972 0.667096i \(-0.232463\pi\)
0.744972 + 0.667096i \(0.232463\pi\)
\(158\) 0 0
\(159\) 1.05668 1.83022i 0.0837998 0.145146i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −16.3543 + 9.44216i −1.28097 + 0.739567i −0.977025 0.213123i \(-0.931636\pi\)
−0.303943 + 0.952690i \(0.598303\pi\)
\(164\) 0 0
\(165\) −3.67897 6.37217i −0.286408 0.496073i
\(166\) 0 0
\(167\) 12.3365 + 7.12250i 0.954630 + 0.551156i 0.894516 0.447036i \(-0.147520\pi\)
0.0601137 + 0.998192i \(0.480854\pi\)
\(168\) 0 0
\(169\) −10.8756 + 7.12192i −0.836583 + 0.547840i
\(170\) 0 0
\(171\) 7.56807 + 4.36943i 0.578745 + 0.334139i
\(172\) 0 0
\(173\) 9.99982 + 17.3202i 0.760272 + 1.31683i 0.942710 + 0.333612i \(0.108268\pi\)
−0.182438 + 0.983217i \(0.558399\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 4.08840i 0.307303i
\(178\) 0 0
\(179\) −11.7011 + 20.2669i −0.874580 + 1.51482i −0.0173711 + 0.999849i \(0.505530\pi\)
−0.857209 + 0.514968i \(0.827804\pi\)
\(180\) 0 0
\(181\) 5.15299 0.383019 0.191509 0.981491i \(-0.438662\pi\)
0.191509 + 0.981491i \(0.438662\pi\)
\(182\) 0 0
\(183\) −8.05330 −0.595317
\(184\) 0 0
\(185\) −4.11266 + 7.12334i −0.302369 + 0.523718i
\(186\) 0 0
\(187\) 15.2707i 1.11670i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −11.1693 19.3458i −0.808182 1.39981i −0.914122 0.405439i \(-0.867119\pi\)
0.105940 0.994372i \(-0.466215\pi\)
\(192\) 0 0
\(193\) 8.93409 + 5.15810i 0.643090 + 0.371288i 0.785804 0.618476i \(-0.212249\pi\)
−0.142714 + 0.989764i \(0.545583\pi\)
\(194\) 0 0
\(195\) −2.03712 + 8.55722i −0.145881 + 0.612795i
\(196\) 0 0
\(197\) 23.1481 + 13.3646i 1.64923 + 0.952186i 0.977377 + 0.211505i \(0.0678364\pi\)
0.671857 + 0.740681i \(0.265497\pi\)
\(198\) 0 0
\(199\) −0.0439516 0.0761264i −0.00311565 0.00539646i 0.864463 0.502696i \(-0.167658\pi\)
−0.867579 + 0.497299i \(0.834325\pi\)
\(200\) 0 0
\(201\) 2.17052 1.25315i 0.153097 0.0883904i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0.586678 1.01616i 0.0409753 0.0709714i
\(206\) 0 0
\(207\) −12.9256 −0.898388
\(208\) 0 0
\(209\) −10.0102 −0.692420
\(210\) 0 0
\(211\) −12.1986 + 21.1285i −0.839783 + 1.45455i 0.0502926 + 0.998735i \(0.483985\pi\)
−0.890076 + 0.455813i \(0.849349\pi\)
\(212\) 0 0
\(213\) 0.774518i 0.0530691i
\(214\) 0 0
\(215\) 4.05336 2.34021i 0.276437 0.159601i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 7.82463 + 4.51755i 0.528740 + 0.305268i
\(220\) 0 0
\(221\) −12.5412 + 13.2664i −0.843615 + 0.892394i
\(222\) 0 0
\(223\) 2.25338 + 1.30099i 0.150897 + 0.0871206i 0.573548 0.819172i \(-0.305567\pi\)
−0.422650 + 0.906293i \(0.638900\pi\)
\(224\) 0 0
\(225\) −14.7632 25.5705i −0.984210 1.70470i
\(226\) 0 0
\(227\) −12.8164 + 7.39957i −0.850657 + 0.491127i −0.860872 0.508821i \(-0.830081\pi\)
0.0102158 + 0.999948i \(0.496748\pi\)
\(228\) 0 0
\(229\) 3.23107i 0.213515i −0.994285 0.106758i \(-0.965953\pi\)
0.994285 0.106758i \(-0.0340469\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −10.8830 −0.712972 −0.356486 0.934301i \(-0.616025\pi\)
−0.356486 + 0.934301i \(0.616025\pi\)
\(234\) 0 0
\(235\) −16.9265 −1.10416
\(236\) 0 0
\(237\) −2.09627 + 3.63085i −0.136167 + 0.235849i
\(238\) 0 0
\(239\) 14.2791i 0.923639i 0.886974 + 0.461819i \(0.152803\pi\)
−0.886974 + 0.461819i \(0.847197\pi\)
\(240\) 0 0
\(241\) 21.9539 12.6751i 1.41417 0.816473i 0.418394 0.908266i \(-0.362593\pi\)
0.995778 + 0.0917927i \(0.0292597\pi\)
\(242\) 0 0
\(243\) 6.88568 + 11.9263i 0.441717 + 0.765076i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 8.69636 + 8.22101i 0.553336 + 0.523090i
\(248\) 0 0
\(249\) −5.50900 3.18062i −0.349119 0.201564i
\(250\) 0 0
\(251\) 10.6797 + 18.4977i 0.674094 + 1.16756i 0.976733 + 0.214460i \(0.0687991\pi\)
−0.302639 + 0.953105i \(0.597868\pi\)
\(252\) 0 0
\(253\) 12.8224 7.40299i 0.806135 0.465422i
\(254\) 0 0
\(255\) 12.3528i 0.773560i
\(256\) 0 0
\(257\) −4.53161 + 7.84898i −0.282674 + 0.489606i −0.972042 0.234805i \(-0.924555\pi\)
0.689368 + 0.724411i \(0.257888\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −6.89761 −0.426951
\(262\) 0 0
\(263\) 7.39726 12.8124i 0.456134 0.790048i −0.542618 0.839979i \(-0.682567\pi\)
0.998753 + 0.0499315i \(0.0159003\pi\)
\(264\) 0 0
\(265\) 14.0455i 0.862811i
\(266\) 0 0
\(267\) 0.309964 0.178958i 0.0189695 0.0109520i
\(268\) 0 0
\(269\) 14.6738 + 25.4158i 0.894678 + 1.54963i 0.834203 + 0.551457i \(0.185928\pi\)
0.0604745 + 0.998170i \(0.480739\pi\)
\(270\) 0 0
\(271\) 9.80478 + 5.66079i 0.595598 + 0.343869i 0.767308 0.641279i \(-0.221596\pi\)
−0.171710 + 0.985148i \(0.554929\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 29.2906 + 16.9109i 1.76629 + 1.01977i
\(276\) 0 0
\(277\) −9.30823 16.1223i −0.559277 0.968697i −0.997557 0.0698581i \(-0.977745\pi\)
0.438280 0.898839i \(-0.355588\pi\)
\(278\) 0 0
\(279\) 23.3401 13.4754i 1.39734 0.806753i
\(280\) 0 0
\(281\) 9.63428i 0.574733i −0.957821 0.287366i \(-0.907220\pi\)
0.957821 0.287366i \(-0.0927797\pi\)
\(282\) 0 0
\(283\) −8.87378 + 15.3698i −0.527492 + 0.913642i 0.471995 + 0.881601i \(0.343534\pi\)
−0.999487 + 0.0320409i \(0.989799\pi\)
\(284\) 0 0
\(285\) 8.09746 0.479652
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −4.31844 + 7.47976i −0.254026 + 0.439986i
\(290\) 0 0
\(291\) 3.46036i 0.202850i
\(292\) 0 0
\(293\) 21.2670 12.2785i 1.24243 0.717320i 0.272845 0.962058i \(-0.412035\pi\)
0.969589 + 0.244738i \(0.0787021\pi\)
\(294\) 0 0
\(295\) −13.5859 23.5316i −0.791005 1.37006i
\(296\) 0 0
\(297\) −8.91398 5.14649i −0.517242 0.298630i
\(298\) 0 0
\(299\) −17.2192 4.09919i −0.995813 0.237062i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −0.490816 0.850118i −0.0281966 0.0488380i
\(304\) 0 0
\(305\) 46.3523 26.7615i 2.65413 1.53236i
\(306\) 0 0
\(307\) 3.59068i 0.204931i −0.994737 0.102466i \(-0.967327\pi\)
0.994737 0.102466i \(-0.0326731\pi\)
\(308\) 0 0
\(309\) 2.23040 3.86317i 0.126883 0.219768i
\(310\) 0 0
\(311\) 8.63829 0.489833 0.244916 0.969544i \(-0.421239\pi\)
0.244916 + 0.969544i \(0.421239\pi\)
\(312\) 0 0
\(313\) 18.0357 1.01944 0.509720 0.860340i \(-0.329749\pi\)
0.509720 + 0.860340i \(0.329749\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 14.5495i 0.817184i −0.912717 0.408592i \(-0.866020\pi\)
0.912717 0.408592i \(-0.133980\pi\)
\(318\) 0 0
\(319\) 6.84254 3.95055i 0.383109 0.221188i
\(320\) 0 0
\(321\) 2.80423 + 4.85707i 0.156517 + 0.271095i
\(322\) 0 0
\(323\) 14.5539 + 8.40272i 0.809803 + 0.467540i
\(324\) 0 0
\(325\) −11.5579 38.7466i −0.641115 2.14928i
\(326\) 0 0
\(327\) 5.97549 + 3.44995i 0.330445 + 0.190783i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 24.6948 14.2576i 1.35735 0.783666i 0.368084 0.929793i \(-0.380014\pi\)
0.989266 + 0.146126i \(0.0466806\pi\)
\(332\) 0 0
\(333\) 5.37825i 0.294726i
\(334\) 0 0
\(335\) −8.32856 + 14.4255i −0.455038 + 0.788149i
\(336\) 0 0
\(337\) 6.02834 0.328385 0.164192 0.986428i \(-0.447498\pi\)
0.164192 + 0.986428i \(0.447498\pi\)
\(338\) 0 0
\(339\) −8.56366 −0.465114
\(340\) 0 0
\(341\) −15.4359 + 26.7357i −0.835899 + 1.44782i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −10.3723 + 5.98843i −0.558424 + 0.322406i
\(346\) 0 0
\(347\) 2.16529 + 3.75039i 0.116239 + 0.201331i 0.918274 0.395945i \(-0.129583\pi\)
−0.802036 + 0.597276i \(0.796250\pi\)
\(348\) 0 0
\(349\) 2.85466 + 1.64814i 0.152806 + 0.0882228i 0.574454 0.818537i \(-0.305215\pi\)
−0.421647 + 0.906760i \(0.638548\pi\)
\(350\) 0 0
\(351\) 3.51739 + 11.7917i 0.187745 + 0.629396i
\(352\) 0 0
\(353\) −17.8264 10.2920i −0.948801 0.547790i −0.0560927 0.998426i \(-0.517864\pi\)
−0.892708 + 0.450635i \(0.851198\pi\)
\(354\) 0 0
\(355\) −2.57376 4.45789i −0.136601 0.236600i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 14.9359i 0.788284i −0.919049 0.394142i \(-0.871042\pi\)
0.919049 0.394142i \(-0.128958\pi\)
\(360\) 0 0
\(361\) −3.99186 + 6.91411i −0.210098 + 0.363900i
\(362\) 0 0
\(363\) −1.15358 −0.0605471
\(364\) 0 0
\(365\) −60.0482 −3.14307
\(366\) 0 0
\(367\) −2.50607 + 4.34064i −0.130816 + 0.226580i −0.923991 0.382414i \(-0.875093\pi\)
0.793176 + 0.608993i \(0.208426\pi\)
\(368\) 0 0
\(369\) 0.767216i 0.0399397i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −8.50108 14.7243i −0.440169 0.762395i 0.557533 0.830155i \(-0.311748\pi\)
−0.997702 + 0.0677598i \(0.978415\pi\)
\(374\) 0 0
\(375\) −13.1297 7.58042i −0.678013 0.391451i
\(376\) 0 0
\(377\) −9.18889 2.18750i −0.473252 0.112662i
\(378\) 0 0
\(379\) 24.9003 + 14.3762i 1.27904 + 0.738454i 0.976672 0.214737i \(-0.0688894\pi\)
0.302369 + 0.953191i \(0.402223\pi\)
\(380\) 0 0
\(381\) 1.01494 + 1.75793i 0.0519972 + 0.0900617i
\(382\) 0 0
\(383\) 25.8614 14.9311i 1.32146 0.762944i 0.337496 0.941327i \(-0.390420\pi\)
0.983961 + 0.178383i \(0.0570866\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 1.53018 2.65035i 0.0777834 0.134725i
\(388\) 0 0
\(389\) 8.35167 0.423446 0.211723 0.977330i \(-0.432092\pi\)
0.211723 + 0.977330i \(0.432092\pi\)
\(390\) 0 0
\(391\) −24.8568 −1.25706
\(392\) 0 0
\(393\) −3.68693 + 6.38595i −0.185981 + 0.322129i
\(394\) 0 0
\(395\) 27.8640i 1.40199i
\(396\) 0 0
\(397\) 2.47868 1.43107i 0.124401 0.0718232i −0.436508 0.899700i \(-0.643785\pi\)
0.560909 + 0.827877i \(0.310452\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 14.6879 + 8.48009i 0.733481 + 0.423476i 0.819694 0.572801i \(-0.194143\pi\)
−0.0862132 + 0.996277i \(0.527477\pi\)
\(402\) 0 0
\(403\) 35.3669 10.5497i 1.76175 0.525519i
\(404\) 0 0
\(405\) −20.3340 11.7398i −1.01040 0.583357i
\(406\) 0 0
\(407\) −3.08034 5.33531i −0.152687 0.264462i
\(408\) 0 0
\(409\) 8.05450 4.65027i 0.398269 0.229941i −0.287468 0.957790i \(-0.592813\pi\)
0.685737 + 0.727849i \(0.259480\pi\)
\(410\) 0 0
\(411\) 2.09811i 0.103492i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 42.2775 2.07532
\(416\) 0 0
\(417\) −5.56162 −0.272353
\(418\) 0 0
\(419\) −10.1471 + 17.5753i −0.495718 + 0.858608i −0.999988 0.00493765i \(-0.998428\pi\)
0.504270 + 0.863546i \(0.331762\pi\)
\(420\) 0 0
\(421\) 6.82905i 0.332827i −0.986056 0.166414i \(-0.946781\pi\)
0.986056 0.166414i \(-0.0532187\pi\)
\(422\) 0 0
\(423\) −9.58485 + 5.53381i −0.466031 + 0.269063i
\(424\) 0 0
\(425\) −28.3906 49.1740i −1.37715 2.38529i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −4.78771 4.52601i −0.231153 0.218518i
\(430\) 0 0
\(431\) 8.38123 + 4.83891i 0.403710 + 0.233082i 0.688083 0.725632i \(-0.258452\pi\)
−0.284374 + 0.958714i \(0.591786\pi\)
\(432\) 0 0
\(433\) −9.67518 16.7579i −0.464960 0.805334i 0.534240 0.845333i \(-0.320598\pi\)
−0.999200 + 0.0399991i \(0.987264\pi\)
\(434\) 0 0
\(435\) −5.53507 + 3.19568i −0.265386 + 0.153221i
\(436\) 0 0
\(437\) 16.2941i 0.779451i
\(438\) 0 0
\(439\) 8.69109 15.0534i 0.414803 0.718460i −0.580605 0.814186i \(-0.697184\pi\)
0.995408 + 0.0957255i \(0.0305171\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −13.2327 −0.628707 −0.314353 0.949306i \(-0.601788\pi\)
−0.314353 + 0.949306i \(0.601788\pi\)
\(444\) 0 0
\(445\) −1.18937 + 2.06005i −0.0563816 + 0.0976558i
\(446\) 0 0
\(447\) 3.74844i 0.177295i
\(448\) 0 0
\(449\) 6.12896 3.53855i 0.289243 0.166995i −0.348357 0.937362i \(-0.613260\pi\)
0.637601 + 0.770367i \(0.279927\pi\)
\(450\) 0 0
\(451\) 0.439416 + 0.761091i 0.0206913 + 0.0358384i
\(452\) 0 0
\(453\) −10.3393 5.96941i −0.485784 0.280467i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −28.9889 16.7367i −1.35604 0.782911i −0.366954 0.930239i \(-0.619599\pi\)
−0.989088 + 0.147328i \(0.952933\pi\)
\(458\) 0 0
\(459\) 8.64009 + 14.9651i 0.403285 + 0.698510i
\(460\) 0 0
\(461\) −7.21129 + 4.16344i −0.335863 + 0.193911i −0.658441 0.752632i \(-0.728784\pi\)
0.322578 + 0.946543i \(0.395451\pi\)
\(462\) 0 0
\(463\) 4.45810i 0.207186i −0.994620 0.103593i \(-0.966966\pi\)
0.994620 0.103593i \(-0.0330339\pi\)
\(464\) 0 0
\(465\) 12.4864 21.6271i 0.579042 1.00293i
\(466\) 0 0
\(467\) −32.0954 −1.48520 −0.742599 0.669737i \(-0.766407\pi\)
−0.742599 + 0.669737i \(0.766407\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 5.65551 9.79564i 0.260592 0.451359i
\(472\) 0 0
\(473\) 3.50559i 0.161187i
\(474\) 0 0
\(475\) −32.2344 + 18.6106i −1.47902 + 0.853911i
\(476\) 0 0
\(477\) 4.59195 + 7.95348i 0.210251 + 0.364165i
\(478\) 0 0
\(479\) 16.7623 + 9.67770i 0.765887 + 0.442185i 0.831406 0.555666i \(-0.187537\pi\)
−0.0655182 + 0.997851i \(0.520870\pi\)
\(480\) 0 0
\(481\) −1.70565 + 7.16482i −0.0777709 + 0.326688i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 11.4989 + 19.9168i 0.522140 + 0.904373i
\(486\) 0 0
\(487\) −5.07742 + 2.93145i −0.230080 + 0.132837i −0.610609 0.791932i \(-0.709075\pi\)
0.380529 + 0.924769i \(0.375742\pi\)
\(488\) 0 0
\(489\) 11.4415i 0.517403i
\(490\) 0 0
\(491\) 5.13898 8.90098i 0.231919 0.401696i −0.726454 0.687215i \(-0.758833\pi\)
0.958373 + 0.285520i \(0.0921662\pi\)
\(492\) 0 0
\(493\) −13.2646 −0.597408
\(494\) 0 0
\(495\) 31.9751 1.43717
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 30.6415i 1.37170i −0.727742 0.685851i \(-0.759430\pi\)
0.727742 0.685851i \(-0.240570\pi\)
\(500\) 0 0
\(501\) 7.47438 4.31534i 0.333931 0.192795i
\(502\) 0 0
\(503\) −1.91528 3.31736i −0.0853981 0.147914i 0.820163 0.572130i \(-0.193883\pi\)
−0.905561 + 0.424216i \(0.860550\pi\)
\(504\) 0 0
\(505\) 5.64997 + 3.26201i 0.251420 + 0.145158i
\(506\) 0 0
\(507\) 0.442274 + 7.86393i 0.0196421 + 0.349250i
\(508\) 0 0
\(509\) −16.3952 9.46577i −0.726704 0.419563i 0.0905109 0.995895i \(-0.471150\pi\)
−0.817215 + 0.576333i \(0.804483\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 9.80988 5.66374i 0.433117 0.250060i
\(514\) 0 0
\(515\) 29.6470i 1.30640i
\(516\) 0 0
\(517\) 6.33888 10.9793i 0.278784 0.482868i
\(518\) 0 0
\(519\) 12.1173 0.531888
\(520\) 0 0
\(521\) 44.3068 1.94112 0.970559 0.240863i \(-0.0774304\pi\)
0.970559 + 0.240863i \(0.0774304\pi\)
\(522\) 0 0
\(523\) −11.4413 + 19.8169i −0.500293 + 0.866532i 0.499707 + 0.866194i \(0.333441\pi\)
−1.00000 0.000337913i \(0.999892\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 44.8848 25.9142i 1.95521 1.12884i
\(528\) 0 0
\(529\) −0.550191 0.952958i −0.0239213 0.0414330i
\(530\) 0 0
\(531\) −15.3865 8.88338i −0.667716 0.385506i
\(532\) 0 0
\(533\) 0.243313 1.02207i 0.0105391 0.0442709i
\(534\) 0 0
\(535\) −32.2806 18.6372i −1.39561 0.805757i
\(536\) 0 0
\(537\) 7.08938 + 12.2792i 0.305929 + 0.529885i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 1.72201i 0.0740351i −0.999315 0.0370175i \(-0.988214\pi\)
0.999315 0.0370175i \(-0.0117857\pi\)
\(542\) 0 0
\(543\) 1.56103 2.70379i 0.0669903 0.116031i
\(544\) 0 0
\(545\) −45.8574 −1.96432
\(546\) 0 0
\(547\) 21.7554 0.930195 0.465098 0.885259i \(-0.346019\pi\)
0.465098 + 0.885259i \(0.346019\pi\)
\(548\) 0 0
\(549\) 17.4984 30.3082i 0.746814 1.29352i
\(550\) 0 0
\(551\) 8.69519i 0.370427i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 2.49175 + 4.31584i 0.105769 + 0.183197i
\(556\) 0 0
\(557\) 17.5727 + 10.1456i 0.744581 + 0.429884i 0.823733 0.566979i \(-0.191888\pi\)
−0.0791516 + 0.996863i \(0.525221\pi\)
\(558\) 0 0
\(559\) 2.87901 3.04548i 0.121769 0.128810i
\(560\) 0 0
\(561\) −8.01255 4.62605i −0.338290 0.195312i
\(562\) 0 0
\(563\) 6.08156 + 10.5336i 0.256307 + 0.443937i 0.965250 0.261329i \(-0.0841609\pi\)
−0.708943 + 0.705266i \(0.750828\pi\)
\(564\) 0 0
\(565\) 49.2898 28.4575i 2.07364 1.19721i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −2.60362 + 4.50961i −0.109150 + 0.189052i −0.915426 0.402486i \(-0.868146\pi\)
0.806276 + 0.591539i \(0.201479\pi\)
\(570\) 0 0
\(571\) −14.2232 −0.595221 −0.297611 0.954687i \(-0.596190\pi\)
−0.297611 + 0.954687i \(0.596190\pi\)
\(572\) 0 0
\(573\) −13.5344 −0.565406
\(574\) 0 0
\(575\) 27.5267 47.6776i 1.14794 1.98829i
\(576\) 0 0
\(577\) 9.80393i 0.408143i −0.978956 0.204071i \(-0.934583\pi\)
0.978956 0.204071i \(-0.0654175\pi\)
\(578\) 0 0
\(579\) 5.41293 3.12516i 0.224954 0.129877i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −9.11057 5.25999i −0.377321 0.217847i
\(584\) 0 0
\(585\) −27.7783 26.2600i −1.14849 1.08572i
\(586\) 0 0
\(587\) 14.4001 + 8.31388i 0.594354 + 0.343151i 0.766817 0.641865i \(-0.221839\pi\)
−0.172463 + 0.985016i \(0.555173\pi\)
\(588\) 0 0
\(589\) −16.9872 29.4228i −0.699947 1.21234i
\(590\) 0 0
\(591\) 14.0248 8.09724i 0.576904 0.333076i
\(592\) 0 0
\(593\) 31.4292i 1.29064i −0.763910 0.645322i \(-0.776723\pi\)
0.763910 0.645322i \(-0.223277\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −0.0532583 −0.00217972
\(598\) 0 0
\(599\) 39.8417 1.62789 0.813943 0.580944i \(-0.197317\pi\)
0.813943 + 0.580944i \(0.197317\pi\)
\(600\) 0 0
\(601\) 4.75064 8.22836i 0.193783 0.335642i −0.752718 0.658343i \(-0.771258\pi\)
0.946501 + 0.322701i \(0.104591\pi\)
\(602\) 0 0
\(603\) 10.8915i 0.443536i
\(604\) 0 0
\(605\) 6.63964 3.83340i 0.269940 0.155850i
\(606\) 0 0
\(607\) 1.84181 + 3.19011i 0.0747569 + 0.129483i 0.900981 0.433860i \(-0.142849\pi\)
−0.826224 + 0.563342i \(0.809515\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −14.5238 + 4.33234i −0.587569 + 0.175268i
\(612\) 0 0
\(613\) −24.4213 14.0996i −0.986367 0.569479i −0.0821804 0.996617i \(-0.526188\pi\)
−0.904186 + 0.427138i \(0.859522\pi\)
\(614\) 0 0
\(615\) −0.355453 0.615662i −0.0143332 0.0248259i
\(616\) 0 0
\(617\) −4.12127 + 2.37942i −0.165916 + 0.0957917i −0.580659 0.814147i \(-0.697205\pi\)
0.414743 + 0.909939i \(0.363872\pi\)
\(618\) 0 0
\(619\) 21.6848i 0.871586i 0.900047 + 0.435793i \(0.143532\pi\)
−0.900047 + 0.435793i \(0.856468\pi\)
\(620\) 0 0
\(621\) −8.37717 + 14.5097i −0.336164 + 0.582254i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 44.6890 1.78756
\(626\) 0 0
\(627\) −3.03246 + 5.25238i −0.121105 + 0.209760i
\(628\) 0 0
\(629\) 10.3428i 0.412393i
\(630\) 0 0
\(631\) −32.0785 + 18.5205i −1.27702 + 0.737290i −0.976300 0.216421i \(-0.930562\pi\)
−0.300724 + 0.953711i \(0.597228\pi\)
\(632\) 0 0
\(633\) 7.39079 + 12.8012i 0.293757 + 0.508803i
\(634\) 0 0
\(635\) −11.6834 6.74542i −0.463642 0.267684i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −2.91486 1.68289i −0.115310 0.0665742i
\(640\) 0 0
\(641\) −0.310057 0.537034i −0.0122465 0.0212116i 0.859837 0.510568i \(-0.170565\pi\)
−0.872084 + 0.489357i \(0.837232\pi\)
\(642\) 0 0
\(643\) −11.5598 + 6.67403i −0.455872 + 0.263198i −0.710307 0.703892i \(-0.751444\pi\)
0.254435 + 0.967090i \(0.418111\pi\)
\(644\) 0 0
\(645\) 2.83574i 0.111657i
\(646\) 0 0
\(647\) 3.26252 5.65085i 0.128263 0.222158i −0.794741 0.606949i \(-0.792393\pi\)
0.923004 + 0.384791i \(0.125727\pi\)
\(648\) 0 0
\(649\) 20.3515 0.798866
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 4.15183 7.19118i 0.162474 0.281413i −0.773282 0.634063i \(-0.781386\pi\)
0.935755 + 0.352650i \(0.114719\pi\)
\(654\) 0 0
\(655\) 49.0074i 1.91488i
\(656\) 0 0
\(657\) −34.0031 + 19.6317i −1.32659 + 0.765906i
\(658\) 0 0
\(659\) 5.41342 + 9.37632i 0.210877 + 0.365250i 0.951989 0.306131i \(-0.0990347\pi\)
−0.741112 + 0.671381i \(0.765701\pi\)
\(660\) 0 0
\(661\) 13.8766 + 8.01167i 0.539738 + 0.311618i 0.744973 0.667095i \(-0.232462\pi\)
−0.205235 + 0.978713i \(0.565796\pi\)
\(662\) 0 0
\(663\) 3.16170 + 10.5993i 0.122790 + 0.411642i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −6.43048 11.1379i −0.248989 0.431262i
\(668\) 0 0
\(669\) 1.36526 0.788235i 0.0527841 0.0304749i
\(670\) 0 0
\(671\) 40.0883i 1.54759i
\(672\) 0 0
\(673\) 7.99990 13.8562i 0.308373 0.534119i −0.669633 0.742692i \(-0.733549\pi\)
0.978007 + 0.208573i \(0.0668820\pi\)
\(674\) 0 0
\(675\) −38.2726 −1.47311
\(676\) 0 0
\(677\) −9.61075 −0.369371 −0.184686 0.982798i \(-0.559127\pi\)
−0.184686 + 0.982798i \(0.559127\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 8.96641i 0.343594i
\(682\) 0 0
\(683\) 15.8268 9.13760i 0.605595 0.349641i −0.165644 0.986186i \(-0.552970\pi\)
0.771240 + 0.636545i \(0.219637\pi\)
\(684\) 0 0
\(685\) −6.97214 12.0761i −0.266392 0.461404i
\(686\) 0 0
\(687\) −1.69535 0.978812i −0.0646817 0.0373440i
\(688\) 0 0
\(689\) 3.59497 + 12.0518i 0.136957 + 0.459137i
\(690\) 0 0
\(691\) −19.3973 11.1990i −0.737908 0.426031i 0.0834002 0.996516i \(-0.473422\pi\)
−0.821308 + 0.570485i \(0.806755\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 32.0109 18.4815i 1.21424 0.701044i
\(696\) 0 0
\(697\) 1.47541i 0.0558852i
\(698\) 0 0
\(699\) −3.29688 + 5.71036i −0.124699 + 0.215985i
\(700\) 0 0
\(701\) −25.9923 −0.981715 −0.490858 0.871240i \(-0.663317\pi\)
−0.490858 + 0.871240i \(0.663317\pi\)
\(702\) 0 0
\(703\) 6.77987 0.255708
\(704\) 0 0
\(705\) −5.12765 + 8.88136i −0.193119 + 0.334491i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 1.24670 0.719782i 0.0468208 0.0270320i −0.476407 0.879225i \(-0.658061\pi\)
0.523228 + 0.852193i \(0.324728\pi\)
\(710\) 0 0
\(711\) −9.10966 15.7784i −0.341639 0.591736i
\(712\) 0 0
\(713\) 43.5189 + 25.1257i 1.62980 + 0.940964i
\(714\) 0 0
\(715\) 42.5967 + 10.1405i 1.59303 + 0.379234i
\(716\) 0 0
\(717\) 7.49228 + 4.32567i 0.279804 + 0.161545i
\(718\) 0 0
\(719\) 20.4385 + 35.4006i 0.762228 + 1.32022i 0.941700 + 0.336455i \(0.109228\pi\)
−0.179471 + 0.983763i \(0.557439\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 15.3590i 0.571207i
\(724\) 0 0
\(725\) 14.6894 25.4428i 0.545550 0.944920i
\(726\) 0 0
\(727\) 22.0673 0.818432 0.409216 0.912438i \(-0.365802\pi\)
0.409216 + 0.912438i \(0.365802\pi\)
\(728\) 0 0
\(729\) −9.14930 −0.338863
\(730\) 0 0
\(731\) 2.94265 5.09681i 0.108838 0.188512i
\(732\) 0 0
\(733\) 11.6739i 0.431186i −0.976483 0.215593i \(-0.930832\pi\)
0.976483 0.215593i \(-0.0691685\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −6.23801 10.8046i −0.229780 0.397991i
\(738\) 0 0
\(739\) 25.2651 + 14.5868i 0.929393 + 0.536585i 0.886620 0.462500i \(-0.153047\pi\)
0.0427734 + 0.999085i \(0.486381\pi\)
\(740\) 0 0
\(741\) 6.94803 2.07255i 0.255242 0.0761370i
\(742\) 0 0
\(743\) 20.1398 + 11.6277i 0.738858 + 0.426580i 0.821654 0.569987i \(-0.193052\pi\)
−0.0827959 + 0.996567i \(0.526385\pi\)
\(744\) 0 0
\(745\) 12.4562 + 21.5749i 0.456362 + 0.790441i
\(746\) 0 0
\(747\) 23.9402 13.8219i 0.875926 0.505716i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −16.8130 + 29.1210i −0.613517 + 1.06264i 0.377126 + 0.926162i \(0.376912\pi\)
−0.990643 + 0.136480i \(0.956421\pi\)
\(752\) 0 0
\(753\) 12.9410 0.471598
\(754\) 0 0
\(755\) 79.3466 2.88772
\(756\) 0 0
\(757\) 10.7585 18.6343i 0.391025 0.677275i −0.601560 0.798828i \(-0.705454\pi\)
0.992585 + 0.121552i \(0.0387872\pi\)
\(758\) 0 0
\(759\) 8.97056i 0.325611i
\(760\) 0 0
\(761\) −1.13247 + 0.653833i −0.0410521 + 0.0237014i −0.520386 0.853931i \(-0.674212\pi\)
0.479333 + 0.877633i \(0.340878\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −46.4889 26.8404i −1.68081 0.970416i
\(766\) 0 0
\(767\) −17.6803 16.7139i −0.638400 0.603505i
\(768\) 0 0
\(769\) 31.1392 + 17.9782i 1.12291 + 0.648312i 0.942142 0.335214i \(-0.108809\pi\)
0.180767 + 0.983526i \(0.442142\pi\)
\(770\) 0 0
\(771\) 2.74558 + 4.75549i 0.0988798 + 0.171265i
\(772\) 0 0
\(773\) 37.8302 21.8413i 1.36066 0.785576i 0.370947 0.928654i \(-0.379033\pi\)
0.989711 + 0.143078i \(0.0456998\pi\)
\(774\) 0 0
\(775\) 114.791i 4.12341i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −0.967159 −0.0346521
\(780\) 0 0
\(781\) 3.85545 0.137959
\(782\) 0 0
\(783\) −4.47041 + 7.74297i −0.159759 + 0.276711i
\(784\) 0 0
\(785\) 75.1742i 2.68308i
\(786\) 0 0
\(787\) −16.8292 + 9.71634i −0.599896 + 0.346350i −0.769001 0.639248i \(-0.779246\pi\)
0.169105 + 0.985598i \(0.445912\pi\)
\(788\) 0 0
\(789\) −4.48180 7.76271i −0.159556 0.276360i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 32.9230 34.8266i 1.16913 1.23673i
\(794\) 0 0
\(795\) 7.36973 + 4.25491i 0.261377 + 0.150906i
\(796\) 0 0
\(797\) −8.40446 14.5570i −0.297701 0.515634i 0.677908 0.735146i \(-0.262887\pi\)
−0.975610 + 0.219513i \(0.929553\pi\)
\(798\) 0 0
\(799\) −18.4323 + 10.6419i −0.652090 + 0.376484i
\(800\) 0 0
\(801\) 1.55538i 0.0549565i
\(802\) 0 0
\(803\) 22.4878 38.9500i 0.793577 1.37452i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 17.7809 0.625919
\(808\) 0 0
\(809\) 9.65649 16.7255i 0.339504 0.588038i −0.644836 0.764321i \(-0.723074\pi\)
0.984339 + 0.176283i \(0.0564075\pi\)
\(810\) 0 0
\(811\) 21.4951i 0.754795i 0.926051 + 0.377397i \(0.123181\pi\)
−0.926051 + 0.377397i \(0.876819\pi\)
\(812\) 0 0
\(813\) 5.94046 3.42973i 0.208341 0.120286i
\(814\) 0 0
\(815\) −38.0207 65.8538i −1.33181 2.30676i
\(816\) 0 0
\(817\) −3.34105 1.92896i −0.116889 0.0674857i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 42.1884 + 24.3575i 1.47239 + 0.850082i 0.999518 0.0310515i \(-0.00988558\pi\)
0.472868 + 0.881134i \(0.343219\pi\)
\(822\) 0 0
\(823\) 9.05247 + 15.6793i 0.315549 + 0.546547i 0.979554 0.201181i \(-0.0644780\pi\)
−0.664005 + 0.747728i \(0.731145\pi\)
\(824\) 0 0
\(825\) 17.7464 10.2459i 0.617850 0.356716i
\(826\) 0 0
\(827\) 43.6958i 1.51945i −0.650244 0.759726i \(-0.725333\pi\)
0.650244 0.759726i \(-0.274667\pi\)
\(828\) 0 0
\(829\) −15.2464 + 26.4076i −0.529530 + 0.917173i 0.469876 + 0.882732i \(0.344298\pi\)
−0.999407 + 0.0344412i \(0.989035\pi\)
\(830\) 0 0
\(831\) −11.2792 −0.391272
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −28.6802 + 49.6755i −0.992518 + 1.71909i
\(836\) 0 0
\(837\) 34.9342i 1.20750i
\(838\) 0 0
\(839\) 27.3088 15.7668i 0.942806 0.544329i 0.0519670 0.998649i \(-0.483451\pi\)
0.890839 + 0.454320i \(0.150118\pi\)
\(840\) 0 0
\(841\) 11.0684 + 19.1711i 0.381670 + 0.661072i
\(842\) 0 0
\(843\) −5.05513 2.91858i −0.174108 0.100521i
\(844\) 0 0
\(845\) −28.6778 43.7927i −0.986547 1.50651i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 5.37639 + 9.31218i 0.184517 + 0.319593i
\(850\) 0 0
\(851\) −8.68453 + 5.01402i −0.297702 + 0.171878i
\(852\) 0 0
\(853\) 49.9618i 1.71066i 0.518085 + 0.855329i \(0.326645\pi\)
−0.518085 + 0.855329i \(0.673355\pi\)
\(854\) 0 0
\(855\) −17.5944 + 30.4743i −0.601715 + 1.04220i
\(856\) 0 0
\(857\) −40.9910 −1.40023 −0.700113 0.714032i \(-0.746867\pi\)
−0.700113 + 0.714032i \(0.746867\pi\)
\(858\) 0 0
\(859\) 45.4142 1.54951 0.774756 0.632260i \(-0.217873\pi\)
0.774756 + 0.632260i \(0.217873\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 52.6344i 1.79170i 0.444360 + 0.895848i \(0.353431\pi\)
−0.444360 + 0.895848i \(0.646569\pi\)
\(864\) 0 0
\(865\) −69.7432 + 40.2662i −2.37134 + 1.36909i
\(866\) 0 0
\(867\) 2.61643 + 4.53179i 0.0888587 + 0.153908i
\(868\) 0 0
\(869\) 18.0739 + 10.4350i 0.613114 + 0.353982i
\(870\) 0 0
\(871\) −3.45411 + 14.5095i −0.117038 + 0.491636i
\(872\) 0 0
\(873\) 13.0229 + 7.51876i 0.440757 + 0.254471i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −10.1519 + 5.86121i −0.342806 + 0.197919i −0.661512 0.749934i \(-0.730085\pi\)
0.318706 + 0.947854i \(0.396752\pi\)
\(878\) 0 0
\(879\) 14.8785i 0.501839i
\(880\) 0 0
\(881\) 14.5273 25.1619i 0.489435 0.847727i −0.510491 0.859883i \(-0.670536\pi\)
0.999926 + 0.0121562i \(0.00386953\pi\)
\(882\) 0 0
\(883\) −41.9709 −1.41243 −0.706216 0.707996i \(-0.749599\pi\)
−0.706216 + 0.707996i \(0.749599\pi\)
\(884\) 0 0
\(885\) −16.4627 −0.553389
\(886\) 0 0
\(887\) 18.4327 31.9265i 0.618911 1.07199i −0.370774 0.928723i \(-0.620907\pi\)
0.989685 0.143262i \(-0.0457592\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 15.2300 8.79303i 0.510223 0.294578i
\(892\) 0 0
\(893\) 6.97597 + 12.0827i 0.233442 + 0.404333i
\(894\) 0 0
\(895\) −81.6086 47.1167i −2.72787 1.57494i
\(896\) 0 0
\(897\) −7.36719 + 7.79317i −0.245983 + 0.260206i
\(898\) 0 0
\(899\) 23.2235 + 13.4081i 0.774547 + 0.447185i
\(900\) 0 0
\(901\) 8.83064 + 15.2951i 0.294191 + 0.509554i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 20.7495i 0.689738i
\(906\) 0 0
\(907\) −15.5373 + 26.9114i −0.515907 + 0.893577i 0.483922 + 0.875111i \(0.339212\pi\)
−0.999829 + 0.0184664i \(0.994122\pi\)
\(908\) 0 0
\(909\) 4.26583 0.141489
\(910\) 0 0
\(911\) 12.7180 0.421365 0.210682 0.977555i \(-0.432431\pi\)
0.210682 + 0.977555i \(0.432431\pi\)
\(912\) 0 0
\(913\) −15.8327 + 27.4231i −0.523987 + 0.907571i
\(914\) 0 0
\(915\) 32.4282i 1.07204i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 5.29381 + 9.16915i 0.174627 + 0.302462i 0.940032 0.341086i \(-0.110795\pi\)
−0.765405 + 0.643549i \(0.777461\pi\)
\(920\) 0 0
\(921\) −1.88404 1.08775i −0.0620812 0.0358426i
\(922\) 0 0
\(923\) −3.34942 3.16634i −0.110247 0.104221i
\(924\) 0 0
\(925\) −19.8384 11.4537i −0.652282 0.376595i
\(926\) 0 0
\(927\) 9.69255 + 16.7880i 0.318345 + 0.551390i
\(928\) 0 0
\(929\) −13.3526 + 7.70913i −0.438085 + 0.252928i −0.702785 0.711402i \(-0.748060\pi\)
0.264700 + 0.964331i \(0.414727\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 2.61686 4.53253i 0.0856721 0.148388i
\(934\) 0 0
\(935\) 61.4904 2.01095
\(936\) 0 0
\(937\) 1.66353 0.0543452 0.0271726 0.999631i \(-0.491350\pi\)
0.0271726 + 0.999631i \(0.491350\pi\)
\(938\) 0 0
\(939\) 5.46369 9.46339i 0.178301 0.308826i
\(940\) 0 0
\(941\) 29.8366i 0.972644i 0.873780 + 0.486322i \(0.161662\pi\)
−0.873780 + 0.486322i \(0.838338\pi\)
\(942\) 0 0
\(943\) 1.23886 0.715258i 0.0403429 0.0232920i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −5.43043 3.13526i −0.176465 0.101882i 0.409166 0.912460i \(-0.365820\pi\)
−0.585631 + 0.810578i \(0.699153\pi\)
\(948\) 0 0
\(949\) −51.5244 + 15.3694i −1.67255 + 0.498911i
\(950\) 0 0
\(951\) −7.63418 4.40759i −0.247555 0.142926i
\(952\) 0 0
\(953\) 10.6219 + 18.3977i 0.344078 + 0.595960i 0.985186 0.171491i \(-0.0548583\pi\)
−0.641108 + 0.767451i \(0.721525\pi\)
\(954\) 0 0
\(955\) 77.8996 44.9754i 2.52077 1.45537i
\(956\) 0 0
\(957\) 4.78706i 0.154744i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −73.7783 −2.37994
\(962\) 0 0
\(963\) −24.3724 −0.785391
\(964\) 0 0
\(965\) −20.7701 + 35.9749i −0.668614 + 1.15807i
\(966\) 0 0
\(967\) 28.1083i 0.903902i −0.892043 0.451951i \(-0.850728\pi\)
0.892043 0.451951i \(-0.149272\pi\)
\(968\) 0 0
\(969\) 8.81785 5.09099i 0.283270 0.163546i
\(970\) 0 0
\(971\) 9.51374 + 16.4783i 0.305310 + 0.528813i 0.977330 0.211720i \(-0.0679065\pi\)
−0.672020 + 0.740533i \(0.734573\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −23.8317 5.67335i −0.763227 0.181693i
\(976\) 0 0
\(977\) 52.4140 + 30.2612i 1.67687 + 0.968143i 0.963636 + 0.267219i \(0.0861046\pi\)
0.713236 + 0.700924i \(0.247229\pi\)
\(978\) 0 0
\(979\) −0.890828 1.54296i −0.0284710 0.0493132i
\(980\) 0 0
\(981\) −25.9674 + 14.9923i −0.829075 + 0.478666i
\(982\) 0 0
\(983\) 44.3845i 1.41565i −0.706390 0.707823i \(-0.749678\pi\)
0.706390 0.707823i \(-0.250322\pi\)
\(984\) 0 0
\(985\) −53.8151 + 93.2104i −1.71469 + 2.96993i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 5.70621 0.181447
\(990\) 0 0
\(991\) −22.7299 + 39.3694i −0.722040 + 1.25061i 0.238141 + 0.971231i \(0.423462\pi\)
−0.960181 + 0.279379i \(0.909871\pi\)
\(992\) 0 0
\(993\) 17.2766i 0.548255i
\(994\) 0 0
\(995\) 0.306538 0.176980i 0.00971791 0.00561064i
\(996\) 0 0
\(997\) 16.3250 + 28.2758i 0.517018 + 0.895502i 0.999805 + 0.0197639i \(0.00629145\pi\)
−0.482786 + 0.875738i \(0.660375\pi\)
\(998\) 0 0
\(999\) 6.03740 + 3.48569i 0.191015 + 0.110283i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2548.2.u.d.589.6 18
7.2 even 3 2548.2.bb.f.1733.6 18
7.3 odd 6 364.2.bq.a.121.6 yes 18
7.4 even 3 2548.2.bq.f.1941.4 18
7.5 odd 6 364.2.bb.a.277.4 yes 18
7.6 odd 2 2548.2.u.e.589.4 18
13.10 even 6 inner 2548.2.u.d.1765.6 18
21.5 even 6 3276.2.hi.i.1369.9 18
21.17 even 6 3276.2.fe.i.2305.1 18
91.10 odd 6 364.2.bb.a.205.4 18
91.23 even 6 2548.2.bq.f.361.4 18
91.62 odd 6 2548.2.u.e.1765.4 18
91.75 odd 6 364.2.bq.a.361.6 yes 18
91.88 even 6 2548.2.bb.f.569.6 18
273.101 even 6 3276.2.hi.i.1297.9 18
273.257 even 6 3276.2.fe.i.361.1 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
364.2.bb.a.205.4 18 91.10 odd 6
364.2.bb.a.277.4 yes 18 7.5 odd 6
364.2.bq.a.121.6 yes 18 7.3 odd 6
364.2.bq.a.361.6 yes 18 91.75 odd 6
2548.2.u.d.589.6 18 1.1 even 1 trivial
2548.2.u.d.1765.6 18 13.10 even 6 inner
2548.2.u.e.589.4 18 7.6 odd 2
2548.2.u.e.1765.4 18 91.62 odd 6
2548.2.bb.f.569.6 18 91.88 even 6
2548.2.bb.f.1733.6 18 7.2 even 3
2548.2.bq.f.361.4 18 91.23 even 6
2548.2.bq.f.1941.4 18 7.4 even 3
3276.2.fe.i.361.1 18 273.257 even 6
3276.2.fe.i.2305.1 18 21.17 even 6
3276.2.hi.i.1297.9 18 273.101 even 6
3276.2.hi.i.1369.9 18 21.5 even 6