Properties

Label 2548.2.u.d
Level $2548$
Weight $2$
Character orbit 2548.u
Analytic conductor $20.346$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2548,2,Mod(589,2548)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2548, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2548.589");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2548 = 2^{2} \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2548.u (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.3458824350\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(9\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - x^{17} + 17 x^{16} - 6 x^{15} + 188 x^{14} - 49 x^{13} + 1116 x^{12} - x^{11} + 4649 x^{10} + \cdots + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 364)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{17}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{3} + (\beta_{11} + \beta_{10}) q^{5} + (\beta_{8} - \beta_{4}) q^{9} + (\beta_{17} - \beta_{16} + \cdots + \beta_{7}) q^{11} + ( - \beta_{13} - \beta_{12} + \beta_{10} + \cdots + 1) q^{13}+ \cdots + (\beta_{17} + 3 \beta_{15} + \beta_{14} + \cdots + 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - q^{3} - 6 q^{9} + 6 q^{11} + 4 q^{13} + 6 q^{15} + 10 q^{17} + 21 q^{19} - 6 q^{23} - 10 q^{25} + 20 q^{27} + 2 q^{29} + 12 q^{33} - 18 q^{37} - 25 q^{39} + 9 q^{41} - 14 q^{43} + 30 q^{45} - 4 q^{51}+ \cdots + 18 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{18} - x^{17} + 17 x^{16} - 6 x^{15} + 188 x^{14} - 49 x^{13} + 1116 x^{12} - x^{11} + 4649 x^{10} + \cdots + 16 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 51\!\cdots\!75 \nu^{17} + \cdots + 19\!\cdots\!64 ) / 47\!\cdots\!71 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 13\!\cdots\!80 \nu^{17} + \cdots + 78\!\cdots\!24 ) / 47\!\cdots\!71 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 19\!\cdots\!81 \nu^{17} + \cdots + 18\!\cdots\!68 ) / 18\!\cdots\!84 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 16\!\cdots\!85 \nu^{17} + \cdots - 11\!\cdots\!92 ) / 14\!\cdots\!13 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 20\!\cdots\!81 \nu^{17} + \cdots - 22\!\cdots\!88 ) / 14\!\cdots\!13 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 80\!\cdots\!19 \nu^{17} + \cdots - 28\!\cdots\!54 ) / 28\!\cdots\!26 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 19\!\cdots\!81 \nu^{17} + \cdots + 18\!\cdots\!68 ) / 47\!\cdots\!71 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 12\!\cdots\!15 \nu^{17} + \cdots + 31\!\cdots\!14 ) / 28\!\cdots\!26 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 27\!\cdots\!49 \nu^{17} + \cdots + 22\!\cdots\!44 ) / 56\!\cdots\!52 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 28\!\cdots\!73 \nu^{17} + \cdots - 42\!\cdots\!72 ) / 56\!\cdots\!52 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( 13\!\cdots\!18 \nu^{17} + \cdots + 36\!\cdots\!22 ) / 14\!\cdots\!13 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( 34\!\cdots\!17 \nu^{17} + \cdots - 15\!\cdots\!64 ) / 18\!\cdots\!84 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( - 26\!\cdots\!98 \nu^{17} + \cdots - 43\!\cdots\!55 ) / 14\!\cdots\!13 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( - 10\!\cdots\!55 \nu^{17} + \cdots + 52\!\cdots\!40 ) / 56\!\cdots\!52 \) Copy content Toggle raw display
\(\beta_{16}\)\(=\) \( ( 58\!\cdots\!98 \nu^{17} + \cdots - 28\!\cdots\!11 ) / 14\!\cdots\!13 \) Copy content Toggle raw display
\(\beta_{17}\)\(=\) \( ( - 14\!\cdots\!53 \nu^{17} + \cdots + 17\!\cdots\!40 ) / 28\!\cdots\!26 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{8} - 4\beta_{4} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{17} - \beta_{16} - \beta_{11} - \beta_{10} - \beta_{9} + \beta_{7} - \beta_{6} - \beta_{5} - 5\beta_{3} + \beta_{2} - 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( - \beta_{17} - 2 \beta_{16} - 2 \beta_{15} - \beta_{14} - \beta_{13} - 2 \beta_{12} - \beta_{11} + \cdots - 27 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 2 \beta_{17} - 2 \beta_{16} - 2 \beta_{15} - 12 \beta_{14} - 6 \beta_{13} - 10 \beta_{12} + \cdots - 32 \beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 29 \beta_{17} + 15 \beta_{16} + 12 \beta_{15} - 14 \beta_{14} + 26 \beta_{13} + 14 \beta_{12} + \cdots + 207 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 89 \beta_{17} + 122 \beta_{16} + 63 \beta_{15} + 89 \beta_{14} + 89 \beta_{13} + 122 \beta_{12} + \cdots + 294 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( - 157 \beta_{17} + 157 \beta_{16} + 173 \beta_{15} + 327 \beta_{14} - 125 \beta_{13} + 170 \beta_{12} + \cdots + 209 \beta_1 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( - 1193 \beta_{17} - 789 \beta_{16} - 343 \beta_{15} + 404 \beta_{14} - 747 \beta_{13} - 404 \beta_{12} + \cdots - 3143 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( - 1771 \beta_{17} - 3399 \beta_{16} - 3008 \beta_{15} - 1771 \beta_{14} - 1589 \beta_{13} + \cdots - 14725 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( 4427 \beta_{17} - 4427 \beta_{16} - 4544 \beta_{15} - 11550 \beta_{14} + 1002 \beta_{13} + \cdots - 14581 \beta_1 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( 34133 \beta_{17} + 17845 \beta_{16} + 11667 \beta_{15} - 16288 \beta_{14} + 27955 \beta_{13} + \cdots + 132000 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( 65591 \beta_{17} + 111597 \beta_{16} + 83765 \beta_{15} + 65591 \beta_{14} + 63794 \beta_{13} + \cdots + 327660 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( - 160099 \beta_{17} + 160099 \beta_{16} + 177531 \beta_{15} + 337065 \beta_{14} - 113959 \beta_{13} + \cdots + 274743 \beta_1 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( - 1078369 \beta_{17} - 613705 \beta_{16} - 354497 \beta_{15} + 464664 \beta_{14} - 819161 \beta_{13} + \cdots - 3260085 \) Copy content Toggle raw display
\(\nu^{16}\)\(=\) \( - 1739546 \beta_{17} - 3299254 \beta_{16} - 2823663 \beta_{15} - 1739546 \beta_{14} - 1576975 \beta_{13} + \cdots - 11361824 \) Copy content Toggle raw display
\(\nu^{17}\)\(=\) \( 4616962 \beta_{17} - 4616962 \beta_{16} - 4884083 \beta_{15} - 10425525 \beta_{14} + \cdots - 10358511 \beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2548\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(885\) \(1275\)
\(\chi(n)\) \(\beta_{4}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
589.1
1.55551 2.69422i
1.19055 2.06209i
0.893365 1.54735i
0.141496 0.245078i
0.118765 0.205706i
−0.302937 + 0.524702i
−0.591009 + 1.02366i
−1.23985 + 2.14749i
−1.26588 + 2.19257i
1.55551 + 2.69422i
1.19055 + 2.06209i
0.893365 + 1.54735i
0.141496 + 0.245078i
0.118765 + 0.205706i
−0.302937 0.524702i
−0.591009 1.02366i
−1.23985 2.14749i
−1.26588 2.19257i
0 −1.55551 + 2.69422i 0 1.19594i 0 0 0 −3.33921 5.78368i 0
589.2 0 −1.19055 + 2.06209i 0 1.91620i 0 0 0 −1.33482 2.31198i 0
589.3 0 −0.893365 + 1.54735i 0 1.41239i 0 0 0 −0.0962010 0.166625i 0
589.4 0 −0.141496 + 0.245078i 0 0.818894i 0 0 0 1.45996 + 2.52872i 0
589.5 0 −0.118765 + 0.205706i 0 2.57768i 0 0 0 1.47179 + 2.54921i 0
589.6 0 0.302937 0.524702i 0 4.02670i 0 0 0 1.31646 + 2.28017i 0
589.7 0 0.591009 1.02366i 0 3.88123i 0 0 0 0.801416 + 1.38809i 0
589.8 0 1.23985 2.14749i 0 0.559885i 0 0 0 −1.57447 2.72707i 0
589.9 0 1.26588 2.19257i 0 1.99909i 0 0 0 −1.70492 2.95301i 0
1765.1 0 −1.55551 2.69422i 0 1.19594i 0 0 0 −3.33921 + 5.78368i 0
1765.2 0 −1.19055 2.06209i 0 1.91620i 0 0 0 −1.33482 + 2.31198i 0
1765.3 0 −0.893365 1.54735i 0 1.41239i 0 0 0 −0.0962010 + 0.166625i 0
1765.4 0 −0.141496 0.245078i 0 0.818894i 0 0 0 1.45996 2.52872i 0
1765.5 0 −0.118765 0.205706i 0 2.57768i 0 0 0 1.47179 2.54921i 0
1765.6 0 0.302937 + 0.524702i 0 4.02670i 0 0 0 1.31646 2.28017i 0
1765.7 0 0.591009 + 1.02366i 0 3.88123i 0 0 0 0.801416 1.38809i 0
1765.8 0 1.23985 + 2.14749i 0 0.559885i 0 0 0 −1.57447 + 2.72707i 0
1765.9 0 1.26588 + 2.19257i 0 1.99909i 0 0 0 −1.70492 + 2.95301i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 589.9
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.e even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2548.2.u.d 18
7.b odd 2 1 2548.2.u.e 18
7.c even 3 1 2548.2.bb.f 18
7.c even 3 1 2548.2.bq.f 18
7.d odd 6 1 364.2.bb.a 18
7.d odd 6 1 364.2.bq.a yes 18
13.e even 6 1 inner 2548.2.u.d 18
21.g even 6 1 3276.2.fe.i 18
21.g even 6 1 3276.2.hi.i 18
91.k even 6 1 2548.2.bq.f 18
91.l odd 6 1 364.2.bq.a yes 18
91.p odd 6 1 364.2.bb.a 18
91.t odd 6 1 2548.2.u.e 18
91.u even 6 1 2548.2.bb.f 18
273.y even 6 1 3276.2.hi.i 18
273.br even 6 1 3276.2.fe.i 18
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
364.2.bb.a 18 7.d odd 6 1
364.2.bb.a 18 91.p odd 6 1
364.2.bq.a yes 18 7.d odd 6 1
364.2.bq.a yes 18 91.l odd 6 1
2548.2.u.d 18 1.a even 1 1 trivial
2548.2.u.d 18 13.e even 6 1 inner
2548.2.u.e 18 7.b odd 2 1
2548.2.u.e 18 91.t odd 6 1
2548.2.bb.f 18 7.c even 3 1
2548.2.bb.f 18 91.u even 6 1
2548.2.bq.f 18 7.c even 3 1
2548.2.bq.f 18 91.k even 6 1
3276.2.fe.i 18 21.g even 6 1
3276.2.fe.i 18 273.br even 6 1
3276.2.hi.i 18 21.g even 6 1
3276.2.hi.i 18 273.y even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{18} + T_{3}^{17} + 17 T_{3}^{16} + 6 T_{3}^{15} + 188 T_{3}^{14} + 49 T_{3}^{13} + 1116 T_{3}^{12} + \cdots + 16 \) acting on \(S_{2}^{\mathrm{new}}(2548, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{18} \) Copy content Toggle raw display
$3$ \( T^{18} + T^{17} + \cdots + 16 \) Copy content Toggle raw display
$5$ \( T^{18} + 50 T^{16} + \cdots + 14283 \) Copy content Toggle raw display
$7$ \( T^{18} \) Copy content Toggle raw display
$11$ \( T^{18} - 6 T^{17} + \cdots + 1581228 \) Copy content Toggle raw display
$13$ \( T^{18} + \cdots + 10604499373 \) Copy content Toggle raw display
$17$ \( T^{18} + \cdots + 14846935104 \) Copy content Toggle raw display
$19$ \( T^{18} - 21 T^{17} + \cdots + 2988012 \) Copy content Toggle raw display
$23$ \( T^{18} + \cdots + 2496801024 \) Copy content Toggle raw display
$29$ \( T^{18} - 2 T^{17} + \cdots + 4100625 \) Copy content Toggle raw display
$31$ \( T^{18} + \cdots + 10703377083 \) Copy content Toggle raw display
$37$ \( T^{18} + \cdots + 1104538032 \) Copy content Toggle raw display
$41$ \( T^{18} + \cdots + 3793327443 \) Copy content Toggle raw display
$43$ \( T^{18} + \cdots + 1883413140625 \) Copy content Toggle raw display
$47$ \( T^{18} + \cdots + 14333519021787 \) Copy content Toggle raw display
$53$ \( (T^{9} - 13 T^{8} + \cdots - 1053081)^{2} \) Copy content Toggle raw display
$59$ \( T^{18} + \cdots + 501089328 \) Copy content Toggle raw display
$61$ \( T^{18} + \cdots + 1673300836 \) Copy content Toggle raw display
$67$ \( T^{18} + \cdots + 26266034700 \) Copy content Toggle raw display
$71$ \( T^{18} + \cdots + 44122876875 \) Copy content Toggle raw display
$73$ \( T^{18} + \cdots + 3223781883 \) Copy content Toggle raw display
$79$ \( (T^{9} - 14 T^{8} + \cdots + 2307735)^{2} \) Copy content Toggle raw display
$83$ \( T^{18} + \cdots + 93\!\cdots\!00 \) Copy content Toggle raw display
$89$ \( T^{18} + \cdots + 465414910128 \) Copy content Toggle raw display
$97$ \( T^{18} + \cdots + 938674322067 \) Copy content Toggle raw display
show more
show less