Properties

Label 364.2.bq.a.361.6
Level $364$
Weight $2$
Character 364.361
Analytic conductor $2.907$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [364,2,Mod(121,364)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(364, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("364.121");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 364 = 2^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 364.bq (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.90655463357\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(9\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - x^{17} + 17 x^{16} - 6 x^{15} + 188 x^{14} - 49 x^{13} + 1116 x^{12} - x^{11} + 4649 x^{10} + \cdots + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 361.6
Root \(-0.302937 - 0.524702i\) of defining polynomial
Character \(\chi\) \(=\) 364.361
Dual form 364.2.bq.a.121.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.605874 q^{3} +(3.48722 - 2.01335i) q^{5} +(2.30111 + 1.30571i) q^{7} -2.63292 q^{9} -3.01596i q^{11} +(-1.03064 + 3.45511i) q^{13} +(2.11282 - 1.21984i) q^{15} +(-2.53164 - 4.38494i) q^{17} +3.31908i q^{19} +(1.39418 + 0.791096i) q^{21} +(-2.45461 + 4.25150i) q^{23} +(5.60715 - 9.71187i) q^{25} -3.41284 q^{27} +(-1.30988 - 2.26878i) q^{29} +(8.86474 + 5.11806i) q^{31} -1.82729i q^{33} +(10.6533 - 0.0796422i) q^{35} +(-1.76903 - 1.02135i) q^{37} +(-0.624435 + 2.09336i) q^{39} +(0.252355 - 0.145697i) q^{41} +(-0.581173 + 1.00662i) q^{43} +(-9.18157 + 5.30098i) q^{45} +(3.64039 - 2.10178i) q^{47} +(3.59024 + 6.00917i) q^{49} +(-1.53386 - 2.65672i) q^{51} +(-1.74405 + 3.02079i) q^{53} +(-6.07218 - 10.5173i) q^{55} +2.01094i q^{57} +(-5.84388 + 3.37397i) q^{59} -13.2920 q^{61} +(-6.05864 - 3.43783i) q^{63} +(3.36229 + 14.1238i) q^{65} +4.13667i q^{67} +(-1.48718 + 2.57588i) q^{69} +(-1.10708 - 0.639174i) q^{71} +(-12.9146 - 7.45626i) q^{73} +(3.39722 - 5.88417i) q^{75} +(3.93797 - 6.94006i) q^{77} +(3.45991 + 5.99274i) q^{79} +5.83100 q^{81} -10.4993i q^{83} +(-17.6568 - 10.1942i) q^{85} +(-0.793622 - 1.37459i) q^{87} +(0.511598 + 0.295371i) q^{89} +(-6.88298 + 6.60489i) q^{91} +(5.37092 + 3.10090i) q^{93} +(6.68246 + 11.5744i) q^{95} +(-4.94617 - 2.85568i) q^{97} +7.94077i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 2 q^{3} + q^{7} + 12 q^{9} - 4 q^{13} + 6 q^{15} - 10 q^{17} - 7 q^{21} - 6 q^{23} + 5 q^{25} - 20 q^{27} + 2 q^{29} + 9 q^{31} + 3 q^{35} + 18 q^{37} + 11 q^{39} - 9 q^{41} - 14 q^{43} + 30 q^{45}+ \cdots - 18 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/364\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(183\) \(197\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.605874 0.349801 0.174901 0.984586i \(-0.444040\pi\)
0.174901 + 0.984586i \(0.444040\pi\)
\(4\) 0 0
\(5\) 3.48722 2.01335i 1.55953 0.900397i 0.562232 0.826979i \(-0.309943\pi\)
0.997301 0.0734176i \(-0.0233906\pi\)
\(6\) 0 0
\(7\) 2.30111 + 1.30571i 0.869739 + 0.493512i
\(8\) 0 0
\(9\) −2.63292 −0.877639
\(10\) 0 0
\(11\) 3.01596i 0.909346i −0.890658 0.454673i \(-0.849756\pi\)
0.890658 0.454673i \(-0.150244\pi\)
\(12\) 0 0
\(13\) −1.03064 + 3.45511i −0.285847 + 0.958275i
\(14\) 0 0
\(15\) 2.11282 1.21984i 0.545527 0.314960i
\(16\) 0 0
\(17\) −2.53164 4.38494i −0.614014 1.06350i −0.990557 0.137104i \(-0.956221\pi\)
0.376543 0.926399i \(-0.377113\pi\)
\(18\) 0 0
\(19\) 3.31908i 0.761449i 0.924689 + 0.380724i \(0.124325\pi\)
−0.924689 + 0.380724i \(0.875675\pi\)
\(20\) 0 0
\(21\) 1.39418 + 0.791096i 0.304236 + 0.172631i
\(22\) 0 0
\(23\) −2.45461 + 4.25150i −0.511821 + 0.886500i 0.488085 + 0.872796i \(0.337696\pi\)
−0.999906 + 0.0137038i \(0.995638\pi\)
\(24\) 0 0
\(25\) 5.60715 9.71187i 1.12143 1.94237i
\(26\) 0 0
\(27\) −3.41284 −0.656801
\(28\) 0 0
\(29\) −1.30988 2.26878i −0.243239 0.421302i 0.718396 0.695634i \(-0.244876\pi\)
−0.961635 + 0.274332i \(0.911543\pi\)
\(30\) 0 0
\(31\) 8.86474 + 5.11806i 1.59216 + 0.919231i 0.992937 + 0.118646i \(0.0378552\pi\)
0.599218 + 0.800586i \(0.295478\pi\)
\(32\) 0 0
\(33\) 1.82729i 0.318090i
\(34\) 0 0
\(35\) 10.6533 0.0796422i 1.80074 0.0134620i
\(36\) 0 0
\(37\) −1.76903 1.02135i −0.290826 0.167909i 0.347488 0.937684i \(-0.387035\pi\)
−0.638314 + 0.769776i \(0.720368\pi\)
\(38\) 0 0
\(39\) −0.624435 + 2.09336i −0.0999897 + 0.335206i
\(40\) 0 0
\(41\) 0.252355 0.145697i 0.0394112 0.0227540i −0.480165 0.877178i \(-0.659423\pi\)
0.519576 + 0.854424i \(0.326090\pi\)
\(42\) 0 0
\(43\) −0.581173 + 1.00662i −0.0886281 + 0.153508i −0.906931 0.421278i \(-0.861582\pi\)
0.818303 + 0.574787i \(0.194915\pi\)
\(44\) 0 0
\(45\) −9.18157 + 5.30098i −1.36871 + 0.790224i
\(46\) 0 0
\(47\) 3.64039 2.10178i 0.531006 0.306576i −0.210420 0.977611i \(-0.567483\pi\)
0.741426 + 0.671035i \(0.234150\pi\)
\(48\) 0 0
\(49\) 3.59024 + 6.00917i 0.512892 + 0.858453i
\(50\) 0 0
\(51\) −1.53386 2.65672i −0.214783 0.372015i
\(52\) 0 0
\(53\) −1.74405 + 3.02079i −0.239564 + 0.414937i −0.960589 0.277972i \(-0.910338\pi\)
0.721025 + 0.692909i \(0.243671\pi\)
\(54\) 0 0
\(55\) −6.07218 10.5173i −0.818772 1.41816i
\(56\) 0 0
\(57\) 2.01094i 0.266356i
\(58\) 0 0
\(59\) −5.84388 + 3.37397i −0.760809 + 0.439253i −0.829586 0.558379i \(-0.811424\pi\)
0.0687772 + 0.997632i \(0.478090\pi\)
\(60\) 0 0
\(61\) −13.2920 −1.70187 −0.850936 0.525270i \(-0.823964\pi\)
−0.850936 + 0.525270i \(0.823964\pi\)
\(62\) 0 0
\(63\) −6.05864 3.43783i −0.763317 0.433125i
\(64\) 0 0
\(65\) 3.36229 + 14.1238i 0.417040 + 1.75184i
\(66\) 0 0
\(67\) 4.13667i 0.505375i 0.967548 + 0.252687i \(0.0813144\pi\)
−0.967548 + 0.252687i \(0.918686\pi\)
\(68\) 0 0
\(69\) −1.48718 + 2.57588i −0.179036 + 0.310099i
\(70\) 0 0
\(71\) −1.10708 0.639174i −0.131387 0.0758560i 0.432866 0.901458i \(-0.357502\pi\)
−0.564253 + 0.825602i \(0.690836\pi\)
\(72\) 0 0
\(73\) −12.9146 7.45626i −1.51154 0.872690i −0.999909 0.0134859i \(-0.995707\pi\)
−0.511634 0.859204i \(-0.670959\pi\)
\(74\) 0 0
\(75\) 3.39722 5.88417i 0.392278 0.679445i
\(76\) 0 0
\(77\) 3.93797 6.94006i 0.448773 0.790894i
\(78\) 0 0
\(79\) 3.45991 + 5.99274i 0.389270 + 0.674236i 0.992352 0.123444i \(-0.0393938\pi\)
−0.603081 + 0.797680i \(0.706060\pi\)
\(80\) 0 0
\(81\) 5.83100 0.647889
\(82\) 0 0
\(83\) 10.4993i 1.15245i −0.817292 0.576224i \(-0.804526\pi\)
0.817292 0.576224i \(-0.195474\pi\)
\(84\) 0 0
\(85\) −17.6568 10.1942i −1.91515 1.10571i
\(86\) 0 0
\(87\) −0.793622 1.37459i −0.0850852 0.147372i
\(88\) 0 0
\(89\) 0.511598 + 0.295371i 0.0542293 + 0.0313093i 0.526870 0.849946i \(-0.323366\pi\)
−0.472640 + 0.881255i \(0.656699\pi\)
\(90\) 0 0
\(91\) −6.88298 + 6.60489i −0.721533 + 0.692380i
\(92\) 0 0
\(93\) 5.37092 + 3.10090i 0.556938 + 0.321548i
\(94\) 0 0
\(95\) 6.68246 + 11.5744i 0.685606 + 1.18750i
\(96\) 0 0
\(97\) −4.94617 2.85568i −0.502208 0.289950i 0.227417 0.973797i \(-0.426972\pi\)
−0.729625 + 0.683848i \(0.760305\pi\)
\(98\) 0 0
\(99\) 7.94077i 0.798077i
\(100\) 0 0
\(101\) 1.62019 0.161215 0.0806075 0.996746i \(-0.474314\pi\)
0.0806075 + 0.996746i \(0.474314\pi\)
\(102\) 0 0
\(103\) 3.68130 + 6.37620i 0.362729 + 0.628265i 0.988409 0.151815i \(-0.0485117\pi\)
−0.625680 + 0.780080i \(0.715178\pi\)
\(104\) 0 0
\(105\) 6.45458 0.0482531i 0.629903 0.00470902i
\(106\) 0 0
\(107\) −4.62841 + 8.01664i −0.447445 + 0.774998i −0.998219 0.0596565i \(-0.980999\pi\)
0.550774 + 0.834655i \(0.314333\pi\)
\(108\) 0 0
\(109\) 9.86259 + 5.69417i 0.944665 + 0.545402i 0.891420 0.453179i \(-0.149710\pi\)
0.0532452 + 0.998581i \(0.483044\pi\)
\(110\) 0 0
\(111\) −1.07181 0.618808i −0.101731 0.0587347i
\(112\) 0 0
\(113\) −7.06719 + 12.2407i −0.664826 + 1.15151i 0.314507 + 0.949255i \(0.398161\pi\)
−0.979333 + 0.202257i \(0.935172\pi\)
\(114\) 0 0
\(115\) 19.7679i 1.84337i
\(116\) 0 0
\(117\) 2.71358 9.09702i 0.250870 0.841020i
\(118\) 0 0
\(119\) −0.100144 13.3958i −0.00918022 1.22799i
\(120\) 0 0
\(121\) 1.90399 0.173090
\(122\) 0 0
\(123\) 0.152895 0.0882740i 0.0137861 0.00795940i
\(124\) 0 0
\(125\) 25.0231i 2.23813i
\(126\) 0 0
\(127\) −1.67517 2.90149i −0.148648 0.257465i 0.782080 0.623178i \(-0.214159\pi\)
−0.930728 + 0.365712i \(0.880825\pi\)
\(128\) 0 0
\(129\) −0.352118 + 0.609886i −0.0310022 + 0.0536974i
\(130\) 0 0
\(131\) −6.08531 10.5401i −0.531676 0.920890i −0.999316 0.0369713i \(-0.988229\pi\)
0.467640 0.883919i \(-0.345104\pi\)
\(132\) 0 0
\(133\) −4.33375 + 7.63757i −0.375784 + 0.662262i
\(134\) 0 0
\(135\) −11.9013 + 6.87123i −1.02430 + 0.591381i
\(136\) 0 0
\(137\) 2.99901 1.73148i 0.256223 0.147930i −0.366388 0.930462i \(-0.619406\pi\)
0.622610 + 0.782532i \(0.286072\pi\)
\(138\) 0 0
\(139\) 4.58975 7.94968i 0.389297 0.674283i −0.603058 0.797697i \(-0.706051\pi\)
0.992355 + 0.123415i \(0.0393846\pi\)
\(140\) 0 0
\(141\) 2.20562 1.27341i 0.185747 0.107241i
\(142\) 0 0
\(143\) 10.4205 + 3.10836i 0.871404 + 0.259934i
\(144\) 0 0
\(145\) −9.13569 5.27449i −0.758678 0.438023i
\(146\) 0 0
\(147\) 2.17523 + 3.64080i 0.179410 + 0.300288i
\(148\) 0 0
\(149\) 6.18683i 0.506845i −0.967356 0.253422i \(-0.918444\pi\)
0.967356 0.253422i \(-0.0815563\pi\)
\(150\) 0 0
\(151\) −17.0651 9.85256i −1.38874 0.801790i −0.395568 0.918437i \(-0.629452\pi\)
−0.993174 + 0.116646i \(0.962786\pi\)
\(152\) 0 0
\(153\) 6.66561 + 11.5452i 0.538882 + 0.933372i
\(154\) 0 0
\(155\) 41.2178 3.31069
\(156\) 0 0
\(157\) 9.33447 16.1678i 0.744972 1.29033i −0.205236 0.978713i \(-0.565796\pi\)
0.950208 0.311617i \(-0.100871\pi\)
\(158\) 0 0
\(159\) −1.05668 + 1.83022i −0.0837998 + 0.145146i
\(160\) 0 0
\(161\) −11.1996 + 6.57819i −0.882649 + 0.518434i
\(162\) 0 0
\(163\) 18.8843i 1.47913i 0.673083 + 0.739567i \(0.264970\pi\)
−0.673083 + 0.739567i \(0.735030\pi\)
\(164\) 0 0
\(165\) −3.67897 6.37217i −0.286408 0.496073i
\(166\) 0 0
\(167\) −12.3365 + 7.12250i −0.954630 + 0.551156i −0.894516 0.447036i \(-0.852480\pi\)
−0.0601137 + 0.998192i \(0.519146\pi\)
\(168\) 0 0
\(169\) −10.8756 7.12192i −0.836583 0.547840i
\(170\) 0 0
\(171\) 8.73886i 0.668277i
\(172\) 0 0
\(173\) 19.9996 1.52054 0.760272 0.649605i \(-0.225066\pi\)
0.760272 + 0.649605i \(0.225066\pi\)
\(174\) 0 0
\(175\) 25.5836 15.0268i 1.93394 1.13592i
\(176\) 0 0
\(177\) −3.54066 + 2.04420i −0.266132 + 0.153651i
\(178\) 0 0
\(179\) 23.4022 1.74916 0.874580 0.484881i \(-0.161137\pi\)
0.874580 + 0.484881i \(0.161137\pi\)
\(180\) 0 0
\(181\) −5.15299 −0.383019 −0.191509 0.981491i \(-0.561338\pi\)
−0.191509 + 0.981491i \(0.561338\pi\)
\(182\) 0 0
\(183\) −8.05330 −0.595317
\(184\) 0 0
\(185\) −8.22532 −0.604738
\(186\) 0 0
\(187\) −13.2248 + 7.63534i −0.967092 + 0.558351i
\(188\) 0 0
\(189\) −7.85332 4.45618i −0.571245 0.324139i
\(190\) 0 0
\(191\) 22.3386 1.61636 0.808182 0.588933i \(-0.200452\pi\)
0.808182 + 0.588933i \(0.200452\pi\)
\(192\) 0 0
\(193\) 10.3162i 0.742577i 0.928518 + 0.371288i \(0.121084\pi\)
−0.928518 + 0.371288i \(0.878916\pi\)
\(194\) 0 0
\(195\) 2.03712 + 8.55722i 0.145881 + 0.612795i
\(196\) 0 0
\(197\) 23.1481 13.3646i 1.64923 0.952186i 0.671857 0.740681i \(-0.265497\pi\)
0.977377 0.211505i \(-0.0678364\pi\)
\(198\) 0 0
\(199\) 0.0439516 + 0.0761264i 0.00311565 + 0.00539646i 0.867579 0.497299i \(-0.165675\pi\)
−0.864463 + 0.502696i \(0.832342\pi\)
\(200\) 0 0
\(201\) 2.50630i 0.176781i
\(202\) 0 0
\(203\) −0.0518150 6.93104i −0.00363670 0.486464i
\(204\) 0 0
\(205\) 0.586678 1.01616i 0.0409753 0.0709714i
\(206\) 0 0
\(207\) 6.46278 11.1939i 0.449194 0.778027i
\(208\) 0 0
\(209\) 10.0102 0.692420
\(210\) 0 0
\(211\) −12.1986 21.1285i −0.839783 1.45455i −0.890076 0.455813i \(-0.849349\pi\)
0.0502926 0.998735i \(-0.483985\pi\)
\(212\) 0 0
\(213\) −0.670752 0.387259i −0.0459592 0.0265345i
\(214\) 0 0
\(215\) 4.68042i 0.319202i
\(216\) 0 0
\(217\) 13.7161 + 23.3520i 0.931108 + 1.58524i
\(218\) 0 0
\(219\) −7.82463 4.51755i −0.528740 0.305268i
\(220\) 0 0
\(221\) 17.7596 4.22784i 1.19464 0.284395i
\(222\) 0 0
\(223\) −2.25338 + 1.30099i −0.150897 + 0.0871206i −0.573548 0.819172i \(-0.694433\pi\)
0.422650 + 0.906293i \(0.361100\pi\)
\(224\) 0 0
\(225\) −14.7632 + 25.5705i −0.984210 + 1.70470i
\(226\) 0 0
\(227\) −12.8164 + 7.39957i −0.850657 + 0.491127i −0.860872 0.508821i \(-0.830081\pi\)
0.0102158 + 0.999948i \(0.496748\pi\)
\(228\) 0 0
\(229\) −2.79819 + 1.61554i −0.184910 + 0.106758i −0.589597 0.807697i \(-0.700714\pi\)
0.404688 + 0.914455i \(0.367380\pi\)
\(230\) 0 0
\(231\) 2.38591 4.20480i 0.156981 0.276656i
\(232\) 0 0
\(233\) 5.44152 + 9.42499i 0.356486 + 0.617452i 0.987371 0.158424i \(-0.0506414\pi\)
−0.630885 + 0.775876i \(0.717308\pi\)
\(234\) 0 0
\(235\) 8.46324 14.6588i 0.552081 0.956232i
\(236\) 0 0
\(237\) 2.09627 + 3.63085i 0.136167 + 0.235849i
\(238\) 0 0
\(239\) 14.2791i 0.923639i −0.886974 0.461819i \(-0.847197\pi\)
0.886974 0.461819i \(-0.152803\pi\)
\(240\) 0 0
\(241\) 21.9539 12.6751i 1.41417 0.816473i 0.418394 0.908266i \(-0.362593\pi\)
0.995778 + 0.0917927i \(0.0292597\pi\)
\(242\) 0 0
\(243\) 13.7714 0.883433
\(244\) 0 0
\(245\) 24.6185 + 13.7269i 1.57282 + 0.876980i
\(246\) 0 0
\(247\) −11.4678 3.42076i −0.729677 0.217658i
\(248\) 0 0
\(249\) 6.36125i 0.403128i
\(250\) 0 0
\(251\) −10.6797 + 18.4977i −0.674094 + 1.16756i 0.302639 + 0.953105i \(0.402132\pi\)
−0.976733 + 0.214460i \(0.931201\pi\)
\(252\) 0 0
\(253\) 12.8224 + 7.40299i 0.806135 + 0.465422i
\(254\) 0 0
\(255\) −10.6978 6.17638i −0.669922 0.386780i
\(256\) 0 0
\(257\) 4.53161 7.84898i 0.282674 0.489606i −0.689368 0.724411i \(-0.742112\pi\)
0.972042 + 0.234805i \(0.0754452\pi\)
\(258\) 0 0
\(259\) −2.73715 4.66007i −0.170078 0.289563i
\(260\) 0 0
\(261\) 3.44881 + 5.97351i 0.213476 + 0.369751i
\(262\) 0 0
\(263\) −14.7945 −0.912269 −0.456134 0.889911i \(-0.650766\pi\)
−0.456134 + 0.889911i \(0.650766\pi\)
\(264\) 0 0
\(265\) 14.0455i 0.862811i
\(266\) 0 0
\(267\) 0.309964 + 0.178958i 0.0189695 + 0.0109520i
\(268\) 0 0
\(269\) −14.6738 25.4158i −0.894678 1.54963i −0.834203 0.551457i \(-0.814072\pi\)
−0.0604745 0.998170i \(-0.519261\pi\)
\(270\) 0 0
\(271\) 9.80478 + 5.66079i 0.595598 + 0.343869i 0.767308 0.641279i \(-0.221596\pi\)
−0.171710 + 0.985148i \(0.554929\pi\)
\(272\) 0 0
\(273\) −4.17022 + 4.00173i −0.252393 + 0.242196i
\(274\) 0 0
\(275\) −29.2906 16.9109i −1.76629 1.01977i
\(276\) 0 0
\(277\) −9.30823 16.1223i −0.559277 0.968697i −0.997557 0.0698581i \(-0.977745\pi\)
0.438280 0.898839i \(-0.355588\pi\)
\(278\) 0 0
\(279\) −23.3401 13.4754i −1.39734 0.806753i
\(280\) 0 0
\(281\) 9.63428i 0.574733i 0.957821 + 0.287366i \(0.0927797\pi\)
−0.957821 + 0.287366i \(0.907220\pi\)
\(282\) 0 0
\(283\) −17.7476 −1.05498 −0.527492 0.849560i \(-0.676867\pi\)
−0.527492 + 0.849560i \(0.676867\pi\)
\(284\) 0 0
\(285\) 4.04873 + 7.01260i 0.239826 + 0.415391i
\(286\) 0 0
\(287\) 0.770934 0.00576334i 0.0455068 0.000340199i
\(288\) 0 0
\(289\) −4.31844 + 7.47976i −0.254026 + 0.439986i
\(290\) 0 0
\(291\) −2.99676 1.73018i −0.175673 0.101425i
\(292\) 0 0
\(293\) −21.2670 12.2785i −1.24243 0.717320i −0.272845 0.962058i \(-0.587965\pi\)
−0.969589 + 0.244738i \(0.921298\pi\)
\(294\) 0 0
\(295\) −13.5859 + 23.5316i −0.791005 + 1.37006i
\(296\) 0 0
\(297\) 10.2930i 0.597259i
\(298\) 0 0
\(299\) −12.1596 12.8627i −0.703208 0.743869i
\(300\) 0 0
\(301\) −2.65170 + 1.55751i −0.152841 + 0.0897731i
\(302\) 0 0
\(303\) 0.981632 0.0563933
\(304\) 0 0
\(305\) −46.3523 + 26.7615i −2.65413 + 1.53236i
\(306\) 0 0
\(307\) 3.59068i 0.204931i −0.994737 0.102466i \(-0.967327\pi\)
0.994737 0.102466i \(-0.0326731\pi\)
\(308\) 0 0
\(309\) 2.23040 + 3.86317i 0.126883 + 0.219768i
\(310\) 0 0
\(311\) 4.31915 7.48098i 0.244916 0.424208i −0.717192 0.696876i \(-0.754573\pi\)
0.962108 + 0.272668i \(0.0879062\pi\)
\(312\) 0 0
\(313\) 9.01786 + 15.6194i 0.509720 + 0.882861i 0.999937 + 0.0112601i \(0.00358428\pi\)
−0.490217 + 0.871601i \(0.663082\pi\)
\(314\) 0 0
\(315\) −28.0494 + 0.209691i −1.58040 + 0.0118148i
\(316\) 0 0
\(317\) 12.6003 7.27477i 0.707702 0.408592i −0.102508 0.994732i \(-0.532687\pi\)
0.810210 + 0.586140i \(0.199353\pi\)
\(318\) 0 0
\(319\) −6.84254 + 3.95055i −0.383109 + 0.221188i
\(320\) 0 0
\(321\) −2.80423 + 4.85707i −0.156517 + 0.271095i
\(322\) 0 0
\(323\) 14.5539 8.40272i 0.809803 0.467540i
\(324\) 0 0
\(325\) 27.7766 + 29.3827i 1.54077 + 1.62986i
\(326\) 0 0
\(327\) 5.97549 + 3.44995i 0.330445 + 0.190783i
\(328\) 0 0
\(329\) 11.1213 0.0831403i 0.613135 0.00458367i
\(330\) 0 0
\(331\) 28.5151i 1.56733i −0.621182 0.783666i \(-0.713347\pi\)
0.621182 0.783666i \(-0.286653\pi\)
\(332\) 0 0
\(333\) 4.65770 + 2.68912i 0.255240 + 0.147363i
\(334\) 0 0
\(335\) 8.32856 + 14.4255i 0.455038 + 0.788149i
\(336\) 0 0
\(337\) 6.02834 0.328385 0.164192 0.986428i \(-0.447498\pi\)
0.164192 + 0.986428i \(0.447498\pi\)
\(338\) 0 0
\(339\) −4.28183 + 7.41634i −0.232557 + 0.402801i
\(340\) 0 0
\(341\) 15.4359 26.7357i 0.835899 1.44782i
\(342\) 0 0
\(343\) 0.415318 + 18.5156i 0.0224251 + 0.999749i
\(344\) 0 0
\(345\) 11.9769i 0.644813i
\(346\) 0 0
\(347\) 2.16529 + 3.75039i 0.116239 + 0.201331i 0.918274 0.395945i \(-0.129583\pi\)
−0.802036 + 0.597276i \(0.796250\pi\)
\(348\) 0 0
\(349\) −2.85466 + 1.64814i −0.152806 + 0.0882228i −0.574454 0.818537i \(-0.694785\pi\)
0.421647 + 0.906760i \(0.361452\pi\)
\(350\) 0 0
\(351\) 3.51739 11.7917i 0.187745 0.629396i
\(352\) 0 0
\(353\) 20.5841i 1.09558i 0.836616 + 0.547790i \(0.184531\pi\)
−0.836616 + 0.547790i \(0.815469\pi\)
\(354\) 0 0
\(355\) −5.14752 −0.273202
\(356\) 0 0
\(357\) −0.0606749 8.11618i −0.00321125 0.429554i
\(358\) 0 0
\(359\) 12.9348 7.46793i 0.682674 0.394142i −0.118188 0.992991i \(-0.537708\pi\)
0.800862 + 0.598849i \(0.204375\pi\)
\(360\) 0 0
\(361\) 7.98372 0.420196
\(362\) 0 0
\(363\) 1.15358 0.0605471
\(364\) 0 0
\(365\) −60.0482 −3.14307
\(366\) 0 0
\(367\) −5.01214 −0.261631 −0.130816 0.991407i \(-0.541760\pi\)
−0.130816 + 0.991407i \(0.541760\pi\)
\(368\) 0 0
\(369\) −0.664429 + 0.383608i −0.0345888 + 0.0199698i
\(370\) 0 0
\(371\) −7.95753 + 4.67395i −0.413135 + 0.242659i
\(372\) 0 0
\(373\) 17.0022 0.880338 0.440169 0.897915i \(-0.354918\pi\)
0.440169 + 0.897915i \(0.354918\pi\)
\(374\) 0 0
\(375\) 15.1608i 0.782902i
\(376\) 0 0
\(377\) 9.18889 2.18750i 0.473252 0.112662i
\(378\) 0 0
\(379\) 24.9003 14.3762i 1.27904 0.738454i 0.302369 0.953191i \(-0.402223\pi\)
0.976672 + 0.214737i \(0.0688894\pi\)
\(380\) 0 0
\(381\) −1.01494 1.75793i −0.0519972 0.0900617i
\(382\) 0 0
\(383\) 29.8622i 1.52589i 0.646465 + 0.762944i \(0.276247\pi\)
−0.646465 + 0.762944i \(0.723753\pi\)
\(384\) 0 0
\(385\) −0.240198 32.1301i −0.0122416 1.63750i
\(386\) 0 0
\(387\) 1.53018 2.65035i 0.0777834 0.134725i
\(388\) 0 0
\(389\) −4.17584 + 7.23276i −0.211723 + 0.366715i −0.952254 0.305307i \(-0.901241\pi\)
0.740531 + 0.672023i \(0.234574\pi\)
\(390\) 0 0
\(391\) 24.8568 1.25706
\(392\) 0 0
\(393\) −3.68693 6.38595i −0.185981 0.322129i
\(394\) 0 0
\(395\) 24.1310 + 13.9320i 1.21416 + 0.700996i
\(396\) 0 0
\(397\) 2.86213i 0.143646i 0.997417 + 0.0718232i \(0.0228817\pi\)
−0.997417 + 0.0718232i \(0.977118\pi\)
\(398\) 0 0
\(399\) −2.62571 + 4.62741i −0.131450 + 0.231660i
\(400\) 0 0
\(401\) −14.6879 8.48009i −0.733481 0.423476i 0.0862132 0.996277i \(-0.472523\pi\)
−0.819694 + 0.572801i \(0.805857\pi\)
\(402\) 0 0
\(403\) −26.8198 + 25.3538i −1.33599 + 1.26296i
\(404\) 0 0
\(405\) 20.3340 11.7398i 1.01040 0.583357i
\(406\) 0 0
\(407\) −3.08034 + 5.33531i −0.152687 + 0.264462i
\(408\) 0 0
\(409\) 8.05450 4.65027i 0.398269 0.229941i −0.287468 0.957790i \(-0.592813\pi\)
0.685737 + 0.727849i \(0.259480\pi\)
\(410\) 0 0
\(411\) 1.81702 1.04906i 0.0896270 0.0517462i
\(412\) 0 0
\(413\) −17.8529 + 0.133464i −0.878482 + 0.00656735i
\(414\) 0 0
\(415\) −21.1387 36.6134i −1.03766 1.79728i
\(416\) 0 0
\(417\) 2.78081 4.81650i 0.136177 0.235865i
\(418\) 0 0
\(419\) 10.1471 + 17.5753i 0.495718 + 0.858608i 0.999988 0.00493765i \(-0.00157171\pi\)
−0.504270 + 0.863546i \(0.668238\pi\)
\(420\) 0 0
\(421\) 6.82905i 0.332827i 0.986056 + 0.166414i \(0.0532187\pi\)
−0.986056 + 0.166414i \(0.946781\pi\)
\(422\) 0 0
\(423\) −9.58485 + 5.53381i −0.466031 + 0.269063i
\(424\) 0 0
\(425\) −56.7812 −2.75429
\(426\) 0 0
\(427\) −30.5865 17.3556i −1.48018 0.839894i
\(428\) 0 0
\(429\) 6.31349 + 1.88327i 0.304818 + 0.0909252i
\(430\) 0 0
\(431\) 9.67781i 0.466164i 0.972457 + 0.233082i \(0.0748810\pi\)
−0.972457 + 0.233082i \(0.925119\pi\)
\(432\) 0 0
\(433\) 9.67518 16.7579i 0.464960 0.805334i −0.534240 0.845333i \(-0.679402\pi\)
0.999200 + 0.0399991i \(0.0127355\pi\)
\(434\) 0 0
\(435\) −5.53507 3.19568i −0.265386 0.153221i
\(436\) 0 0
\(437\) −14.1111 8.14703i −0.675024 0.389725i
\(438\) 0 0
\(439\) −8.69109 + 15.0534i −0.414803 + 0.718460i −0.995408 0.0957255i \(-0.969483\pi\)
0.580605 + 0.814186i \(0.302816\pi\)
\(440\) 0 0
\(441\) −9.45281 15.8217i −0.450134 0.753412i
\(442\) 0 0
\(443\) 6.61637 + 11.4599i 0.314353 + 0.544476i 0.979300 0.202415i \(-0.0648790\pi\)
−0.664946 + 0.746891i \(0.731546\pi\)
\(444\) 0 0
\(445\) 2.37874 0.112763
\(446\) 0 0
\(447\) 3.74844i 0.177295i
\(448\) 0 0
\(449\) 6.12896 + 3.53855i 0.289243 + 0.166995i 0.637601 0.770367i \(-0.279927\pi\)
−0.348357 + 0.937362i \(0.613260\pi\)
\(450\) 0 0
\(451\) −0.439416 0.761091i −0.0206913 0.0358384i
\(452\) 0 0
\(453\) −10.3393 5.96941i −0.485784 0.280467i
\(454\) 0 0
\(455\) −10.7045 + 36.8906i −0.501837 + 1.72946i
\(456\) 0 0
\(457\) 28.9889 + 16.7367i 1.35604 + 0.782911i 0.989088 0.147328i \(-0.0470672\pi\)
0.366954 + 0.930239i \(0.380401\pi\)
\(458\) 0 0
\(459\) 8.64009 + 14.9651i 0.403285 + 0.698510i
\(460\) 0 0
\(461\) 7.21129 + 4.16344i 0.335863 + 0.193911i 0.658441 0.752632i \(-0.271216\pi\)
−0.322578 + 0.946543i \(0.604549\pi\)
\(462\) 0 0
\(463\) 4.45810i 0.207186i 0.994620 + 0.103593i \(0.0330339\pi\)
−0.994620 + 0.103593i \(0.966966\pi\)
\(464\) 0 0
\(465\) 24.9728 1.15808
\(466\) 0 0
\(467\) −16.0477 27.7954i −0.742599 1.28622i −0.951308 0.308241i \(-0.900260\pi\)
0.208710 0.977978i \(-0.433074\pi\)
\(468\) 0 0
\(469\) −5.40129 + 9.51894i −0.249408 + 0.439544i
\(470\) 0 0
\(471\) 5.65551 9.79564i 0.260592 0.451359i
\(472\) 0 0
\(473\) 3.03593 + 1.75279i 0.139592 + 0.0805936i
\(474\) 0 0
\(475\) 32.2344 + 18.6106i 1.47902 + 0.853911i
\(476\) 0 0
\(477\) 4.59195 7.95348i 0.210251 0.364165i
\(478\) 0 0
\(479\) 19.3554i 0.884371i −0.896924 0.442185i \(-0.854203\pi\)
0.896924 0.442185i \(-0.145797\pi\)
\(480\) 0 0
\(481\) 5.35209 5.05955i 0.244034 0.230695i
\(482\) 0 0
\(483\) −6.78552 + 3.98555i −0.308752 + 0.181349i
\(484\) 0 0
\(485\) −22.9979 −1.04428
\(486\) 0 0
\(487\) 5.07742 2.93145i 0.230080 0.132837i −0.380529 0.924769i \(-0.624258\pi\)
0.610609 + 0.791932i \(0.290925\pi\)
\(488\) 0 0
\(489\) 11.4415i 0.517403i
\(490\) 0 0
\(491\) 5.13898 + 8.90098i 0.231919 + 0.401696i 0.958373 0.285520i \(-0.0921662\pi\)
−0.726454 + 0.687215i \(0.758833\pi\)
\(492\) 0 0
\(493\) −6.63230 + 11.4875i −0.298704 + 0.517370i
\(494\) 0 0
\(495\) 15.9875 + 27.6912i 0.718587 + 1.24463i
\(496\) 0 0
\(497\) −1.71295 2.91634i −0.0768361 0.130816i
\(498\) 0 0
\(499\) 26.5363 15.3208i 1.18793 0.685851i 0.230094 0.973168i \(-0.426097\pi\)
0.957835 + 0.287317i \(0.0927634\pi\)
\(500\) 0 0
\(501\) −7.47438 + 4.31534i −0.333931 + 0.192795i
\(502\) 0 0
\(503\) 1.91528 3.31736i 0.0853981 0.147914i −0.820163 0.572130i \(-0.806117\pi\)
0.905561 + 0.424216i \(0.139450\pi\)
\(504\) 0 0
\(505\) 5.64997 3.26201i 0.251420 0.145158i
\(506\) 0 0
\(507\) −6.58923 4.31499i −0.292638 0.191635i
\(508\) 0 0
\(509\) −16.3952 9.46577i −0.726704 0.419563i 0.0905109 0.995895i \(-0.471150\pi\)
−0.817215 + 0.576333i \(0.804483\pi\)
\(510\) 0 0
\(511\) −19.9823 34.0205i −0.883965 1.50498i
\(512\) 0 0
\(513\) 11.3275i 0.500120i
\(514\) 0 0
\(515\) 25.6750 + 14.8235i 1.13138 + 0.653201i
\(516\) 0 0
\(517\) −6.33888 10.9793i −0.278784 0.482868i
\(518\) 0 0
\(519\) 12.1173 0.531888
\(520\) 0 0
\(521\) 22.1534 38.3709i 0.970559 1.68106i 0.276686 0.960960i \(-0.410764\pi\)
0.693873 0.720097i \(-0.255903\pi\)
\(522\) 0 0
\(523\) 11.4413 19.8169i 0.500293 0.866532i −0.499707 0.866194i \(-0.666559\pi\)
1.00000 0.000337913i \(-0.000107561\pi\)
\(524\) 0 0
\(525\) 15.5004 9.10434i 0.676493 0.397346i
\(526\) 0 0
\(527\) 51.8284i 2.25768i
\(528\) 0 0
\(529\) −0.550191 0.952958i −0.0239213 0.0414330i
\(530\) 0 0
\(531\) 15.3865 8.88338i 0.667716 0.385506i
\(532\) 0 0
\(533\) 0.243313 + 1.02207i 0.0105391 + 0.0442709i
\(534\) 0 0
\(535\) 37.2744i 1.61151i
\(536\) 0 0
\(537\) 14.1788 0.611859
\(538\) 0 0
\(539\) 18.1234 10.8280i 0.780631 0.466396i
\(540\) 0 0
\(541\) 1.49131 0.861006i 0.0641163 0.0370175i −0.467599 0.883941i \(-0.654881\pi\)
0.531715 + 0.846923i \(0.321548\pi\)
\(542\) 0 0
\(543\) −3.12206 −0.133981
\(544\) 0 0
\(545\) 45.8574 1.96432
\(546\) 0 0
\(547\) 21.7554 0.930195 0.465098 0.885259i \(-0.346019\pi\)
0.465098 + 0.885259i \(0.346019\pi\)
\(548\) 0 0
\(549\) 34.9968 1.49363
\(550\) 0 0
\(551\) 7.53025 4.34759i 0.320800 0.185214i
\(552\) 0 0
\(553\) 0.136864 + 18.3076i 0.00582005 + 0.778519i
\(554\) 0 0
\(555\) −4.98351 −0.211538
\(556\) 0 0
\(557\) 20.2913i 0.859768i 0.902884 + 0.429884i \(0.141446\pi\)
−0.902884 + 0.429884i \(0.858554\pi\)
\(558\) 0 0
\(559\) −2.87901 3.04548i −0.121769 0.128810i
\(560\) 0 0
\(561\) −8.01255 + 4.62605i −0.338290 + 0.195312i
\(562\) 0 0
\(563\) −6.08156 10.5336i −0.256307 0.443937i 0.708943 0.705266i \(-0.249172\pi\)
−0.965250 + 0.261329i \(0.915839\pi\)
\(564\) 0 0
\(565\) 56.9149i 2.39443i
\(566\) 0 0
\(567\) 13.4178 + 7.61360i 0.563494 + 0.319741i
\(568\) 0 0
\(569\) −2.60362 + 4.50961i −0.109150 + 0.189052i −0.915426 0.402486i \(-0.868146\pi\)
0.806276 + 0.591539i \(0.201479\pi\)
\(570\) 0 0
\(571\) 7.11158 12.3176i 0.297611 0.515477i −0.677978 0.735082i \(-0.737144\pi\)
0.975589 + 0.219605i \(0.0704770\pi\)
\(572\) 0 0
\(573\) 13.5344 0.565406
\(574\) 0 0
\(575\) 27.5267 + 47.6776i 1.14794 + 1.98829i
\(576\) 0 0
\(577\) 8.49045 + 4.90196i 0.353462 + 0.204071i 0.666209 0.745765i \(-0.267916\pi\)
−0.312747 + 0.949836i \(0.601249\pi\)
\(578\) 0 0
\(579\) 6.25032i 0.259754i
\(580\) 0 0
\(581\) 13.7090 24.1601i 0.568747 1.00233i
\(582\) 0 0
\(583\) 9.11057 + 5.25999i 0.377321 + 0.217847i
\(584\) 0 0
\(585\) −8.85262 37.1867i −0.366011 1.53748i
\(586\) 0 0
\(587\) −14.4001 + 8.31388i −0.594354 + 0.343151i −0.766817 0.641865i \(-0.778161\pi\)
0.172463 + 0.985016i \(0.444827\pi\)
\(588\) 0 0
\(589\) −16.9872 + 29.4228i −0.699947 + 1.21234i
\(590\) 0 0
\(591\) 14.0248 8.09724i 0.576904 0.333076i
\(592\) 0 0
\(593\) −27.2185 + 15.7146i −1.11773 + 0.645322i −0.940821 0.338905i \(-0.889944\pi\)
−0.176910 + 0.984227i \(0.556610\pi\)
\(594\) 0 0
\(595\) −27.3197 46.5126i −1.12000 1.90683i
\(596\) 0 0
\(597\) 0.0266291 + 0.0461230i 0.00108986 + 0.00188769i
\(598\) 0 0
\(599\) −19.9208 + 34.5039i −0.813943 + 1.40979i 0.0961406 + 0.995368i \(0.469350\pi\)
−0.910084 + 0.414424i \(0.863983\pi\)
\(600\) 0 0
\(601\) −4.75064 8.22836i −0.193783 0.335642i 0.752718 0.658343i \(-0.228742\pi\)
−0.946501 + 0.322701i \(0.895409\pi\)
\(602\) 0 0
\(603\) 10.8915i 0.443536i
\(604\) 0 0
\(605\) 6.63964 3.83340i 0.269940 0.155850i
\(606\) 0 0
\(607\) 3.68363 0.149514 0.0747569 0.997202i \(-0.476182\pi\)
0.0747569 + 0.997202i \(0.476182\pi\)
\(608\) 0 0
\(609\) −0.0313934 4.19934i −0.00127212 0.170166i
\(610\) 0 0
\(611\) 3.50997 + 14.7441i 0.141998 + 0.596483i
\(612\) 0 0
\(613\) 28.1993i 1.13896i −0.822006 0.569479i \(-0.807145\pi\)
0.822006 0.569479i \(-0.192855\pi\)
\(614\) 0 0
\(615\) 0.355453 0.615662i 0.0143332 0.0248259i
\(616\) 0 0
\(617\) −4.12127 2.37942i −0.165916 0.0957917i 0.414743 0.909939i \(-0.363872\pi\)
−0.580659 + 0.814147i \(0.697205\pi\)
\(618\) 0 0
\(619\) −18.7796 10.8424i −0.754815 0.435793i 0.0726159 0.997360i \(-0.476865\pi\)
−0.827431 + 0.561567i \(0.810199\pi\)
\(620\) 0 0
\(621\) 8.37717 14.5097i 0.336164 0.582254i
\(622\) 0 0
\(623\) 0.791576 + 1.34768i 0.0317138 + 0.0539938i
\(624\) 0 0
\(625\) −22.3445 38.7018i −0.893779 1.54807i
\(626\) 0 0
\(627\) 6.06492 0.242210
\(628\) 0 0
\(629\) 10.3428i 0.412393i
\(630\) 0 0
\(631\) −32.0785 18.5205i −1.27702 0.737290i −0.300724 0.953711i \(-0.597228\pi\)
−0.976300 + 0.216421i \(0.930562\pi\)
\(632\) 0 0
\(633\) −7.39079 12.8012i −0.293757 0.508803i
\(634\) 0 0
\(635\) −11.6834 6.74542i −0.463642 0.267684i
\(636\) 0 0
\(637\) −24.4626 + 6.21142i −0.969243 + 0.246105i
\(638\) 0 0
\(639\) 2.91486 + 1.68289i 0.115310 + 0.0665742i
\(640\) 0 0
\(641\) −0.310057 0.537034i −0.0122465 0.0212116i 0.859837 0.510568i \(-0.170565\pi\)
−0.872084 + 0.489357i \(0.837232\pi\)
\(642\) 0 0
\(643\) 11.5598 + 6.67403i 0.455872 + 0.263198i 0.710307 0.703892i \(-0.248556\pi\)
−0.254435 + 0.967090i \(0.581889\pi\)
\(644\) 0 0
\(645\) 2.83574i 0.111657i
\(646\) 0 0
\(647\) 6.52504 0.256526 0.128263 0.991740i \(-0.459060\pi\)
0.128263 + 0.991740i \(0.459060\pi\)
\(648\) 0 0
\(649\) 10.1757 + 17.6249i 0.399433 + 0.691838i
\(650\) 0 0
\(651\) 8.31021 + 14.1484i 0.325703 + 0.554519i
\(652\) 0 0
\(653\) 4.15183 7.19118i 0.162474 0.281413i −0.773282 0.634063i \(-0.781386\pi\)
0.935755 + 0.352650i \(0.114719\pi\)
\(654\) 0 0
\(655\) −42.4417 24.5037i −1.65833 0.957439i
\(656\) 0 0
\(657\) 34.0031 + 19.6317i 1.32659 + 0.765906i
\(658\) 0 0
\(659\) 5.41342 9.37632i 0.210877 0.365250i −0.741112 0.671381i \(-0.765701\pi\)
0.951989 + 0.306131i \(0.0990347\pi\)
\(660\) 0 0
\(661\) 16.0233i 0.623236i −0.950207 0.311618i \(-0.899129\pi\)
0.950207 0.311618i \(-0.100871\pi\)
\(662\) 0 0
\(663\) 10.7601 2.56154i 0.417888 0.0994818i
\(664\) 0 0
\(665\) 0.264339 + 35.3593i 0.0102506 + 1.37117i
\(666\) 0 0
\(667\) 12.8610 0.497978
\(668\) 0 0
\(669\) −1.36526 + 0.788235i −0.0527841 + 0.0304749i
\(670\) 0 0
\(671\) 40.0883i 1.54759i
\(672\) 0 0
\(673\) 7.99990 + 13.8562i 0.308373 + 0.534119i 0.978007 0.208573i \(-0.0668820\pi\)
−0.669633 + 0.742692i \(0.733549\pi\)
\(674\) 0 0
\(675\) −19.1363 + 33.1450i −0.736556 + 1.27575i
\(676\) 0 0
\(677\) −4.80538 8.32316i −0.184686 0.319885i 0.758785 0.651341i \(-0.225793\pi\)
−0.943471 + 0.331456i \(0.892460\pi\)
\(678\) 0 0
\(679\) −7.65302 13.0295i −0.293696 0.500026i
\(680\) 0 0
\(681\) −7.76514 + 4.48321i −0.297561 + 0.171797i
\(682\) 0 0
\(683\) −15.8268 + 9.13760i −0.605595 + 0.349641i −0.771240 0.636545i \(-0.780363\pi\)
0.165644 + 0.986186i \(0.447030\pi\)
\(684\) 0 0
\(685\) 6.97214 12.0761i 0.266392 0.461404i
\(686\) 0 0
\(687\) −1.69535 + 0.978812i −0.0646817 + 0.0373440i
\(688\) 0 0
\(689\) −8.63967 9.13923i −0.329145 0.348177i
\(690\) 0 0
\(691\) −19.3973 11.1990i −0.737908 0.426031i 0.0834002 0.996516i \(-0.473422\pi\)
−0.821308 + 0.570485i \(0.806755\pi\)
\(692\) 0 0
\(693\) −10.3683 + 18.2726i −0.393861 + 0.694119i
\(694\) 0 0
\(695\) 36.9631i 1.40209i
\(696\) 0 0
\(697\) −1.27774 0.737706i −0.0483980 0.0279426i
\(698\) 0 0
\(699\) 3.29688 + 5.71036i 0.124699 + 0.215985i
\(700\) 0 0
\(701\) −25.9923 −0.981715 −0.490858 0.871240i \(-0.663317\pi\)
−0.490858 + 0.871240i \(0.663317\pi\)
\(702\) 0 0
\(703\) 3.38993 5.87154i 0.127854 0.221449i
\(704\) 0 0
\(705\) 5.12765 8.88136i 0.193119 0.334491i
\(706\) 0 0
\(707\) 3.72824 + 2.11550i 0.140215 + 0.0795616i
\(708\) 0 0
\(709\) 1.43956i 0.0540640i −0.999635 0.0270320i \(-0.991394\pi\)
0.999635 0.0270320i \(-0.00860560\pi\)
\(710\) 0 0
\(711\) −9.10966 15.7784i −0.341639 0.591736i
\(712\) 0 0
\(713\) −43.5189 + 25.1257i −1.62980 + 0.940964i
\(714\) 0 0
\(715\) 42.5967 10.1405i 1.59303 0.379234i
\(716\) 0 0
\(717\) 8.65134i 0.323090i
\(718\) 0 0
\(719\) 40.8771 1.52446 0.762228 0.647308i \(-0.224105\pi\)
0.762228 + 0.647308i \(0.224105\pi\)
\(720\) 0 0
\(721\) 0.145621 + 19.4791i 0.00542322 + 0.725438i
\(722\) 0 0
\(723\) 13.3013 7.67949i 0.494680 0.285603i
\(724\) 0 0
\(725\) −29.3788 −1.09110
\(726\) 0 0
\(727\) −22.0673 −0.818432 −0.409216 0.912438i \(-0.634198\pi\)
−0.409216 + 0.912438i \(0.634198\pi\)
\(728\) 0 0
\(729\) −9.14930 −0.338863
\(730\) 0 0
\(731\) 5.88529 0.217675
\(732\) 0 0
\(733\) −10.1099 + 5.83696i −0.373418 + 0.215593i −0.674951 0.737863i \(-0.735835\pi\)
0.301533 + 0.953456i \(0.402502\pi\)
\(734\) 0 0
\(735\) 14.9157 + 8.31678i 0.550175 + 0.306769i
\(736\) 0 0
\(737\) 12.4760 0.459560
\(738\) 0 0
\(739\) 29.1737i 1.07317i 0.843846 + 0.536585i \(0.180286\pi\)
−0.843846 + 0.536585i \(0.819714\pi\)
\(740\) 0 0
\(741\) −6.94803 2.07255i −0.255242 0.0761370i
\(742\) 0 0
\(743\) 20.1398 11.6277i 0.738858 0.426580i −0.0827959 0.996567i \(-0.526385\pi\)
0.821654 + 0.569987i \(0.193052\pi\)
\(744\) 0 0
\(745\) −12.4562 21.5749i −0.456362 0.790441i
\(746\) 0 0
\(747\) 27.6438i 1.01143i
\(748\) 0 0
\(749\) −21.1179 + 12.4038i −0.771632 + 0.453226i
\(750\) 0 0
\(751\) −16.8130 + 29.1210i −0.613517 + 1.06264i 0.377126 + 0.926162i \(0.376912\pi\)
−0.990643 + 0.136480i \(0.956421\pi\)
\(752\) 0 0
\(753\) −6.47052 + 11.2073i −0.235799 + 0.408416i
\(754\) 0 0
\(755\) −79.3466 −2.88772
\(756\) 0 0
\(757\) 10.7585 + 18.6343i 0.391025 + 0.677275i 0.992585 0.121552i \(-0.0387872\pi\)
−0.601560 + 0.798828i \(0.705454\pi\)
\(758\) 0 0
\(759\) 7.76873 + 4.48528i 0.281987 + 0.162805i
\(760\) 0 0
\(761\) 1.30767i 0.0474029i −0.999719 0.0237014i \(-0.992455\pi\)
0.999719 0.0237014i \(-0.00754511\pi\)
\(762\) 0 0
\(763\) 15.2600 + 25.9806i 0.552449 + 0.940561i
\(764\) 0 0
\(765\) 46.4889 + 26.8404i 1.68081 + 0.970416i
\(766\) 0 0
\(767\) −5.63451 23.6686i −0.203451 0.854624i
\(768\) 0 0
\(769\) −31.1392 + 17.9782i −1.12291 + 0.648312i −0.942142 0.335214i \(-0.891191\pi\)
−0.180767 + 0.983526i \(0.557858\pi\)
\(770\) 0 0
\(771\) 2.74558 4.75549i 0.0988798 0.171265i
\(772\) 0 0
\(773\) 37.8302 21.8413i 1.36066 0.785576i 0.370947 0.928654i \(-0.379033\pi\)
0.989711 + 0.143078i \(0.0456998\pi\)
\(774\) 0 0
\(775\) 99.4119 57.3955i 3.57098 2.06171i
\(776\) 0 0
\(777\) −1.65837 2.82342i −0.0594935 0.101290i
\(778\) 0 0
\(779\) 0.483580 + 0.837584i 0.0173260 + 0.0300096i
\(780\) 0 0
\(781\) −1.92772 + 3.33892i −0.0689794 + 0.119476i
\(782\) 0 0
\(783\) 4.47041 + 7.74297i 0.159759 + 0.276711i
\(784\) 0 0
\(785\) 75.1742i 2.68308i
\(786\) 0 0
\(787\) −16.8292 + 9.71634i −0.599896 + 0.346350i −0.769001 0.639248i \(-0.779246\pi\)
0.169105 + 0.985598i \(0.445912\pi\)
\(788\) 0 0
\(789\) −8.96361 −0.319113
\(790\) 0 0
\(791\) −32.2453 + 18.9396i −1.14651 + 0.673415i
\(792\) 0 0
\(793\) 13.6993 45.9255i 0.486475 1.63086i
\(794\) 0 0
\(795\) 8.50983i 0.301813i
\(796\) 0 0
\(797\) 8.40446 14.5570i 0.297701 0.515634i −0.677908 0.735146i \(-0.737113\pi\)
0.975610 + 0.219513i \(0.0704467\pi\)
\(798\) 0 0
\(799\) −18.4323 10.6419i −0.652090 0.376484i
\(800\) 0 0
\(801\) −1.34700 0.777689i −0.0475938 0.0274783i
\(802\) 0 0
\(803\) −22.4878 + 38.9500i −0.793577 + 1.37452i
\(804\) 0 0
\(805\) −25.8112 + 45.4882i −0.909724 + 1.60325i
\(806\) 0 0
\(807\) −8.89047 15.3988i −0.312960 0.542062i
\(808\) 0 0
\(809\) −19.3130 −0.679008 −0.339504 0.940605i \(-0.610259\pi\)
−0.339504 + 0.940605i \(0.610259\pi\)
\(810\) 0 0
\(811\) 21.4951i 0.754795i 0.926051 + 0.377397i \(0.123181\pi\)
−0.926051 + 0.377397i \(0.876819\pi\)
\(812\) 0 0
\(813\) 5.94046 + 3.42973i 0.208341 + 0.120286i
\(814\) 0 0
\(815\) 38.0207 + 65.8538i 1.33181 + 2.30676i
\(816\) 0 0
\(817\) −3.34105 1.92896i −0.116889 0.0674857i
\(818\) 0 0
\(819\) 18.1223 17.3901i 0.633245 0.607660i
\(820\) 0 0
\(821\) −42.1884 24.3575i −1.47239 0.850082i −0.472868 0.881134i \(-0.656781\pi\)
−0.999518 + 0.0310515i \(0.990114\pi\)
\(822\) 0 0
\(823\) 9.05247 + 15.6793i 0.315549 + 0.546547i 0.979554 0.201181i \(-0.0644780\pi\)
−0.664005 + 0.747728i \(0.731145\pi\)
\(824\) 0 0
\(825\) −17.7464 10.2459i −0.617850 0.356716i
\(826\) 0 0
\(827\) 43.6958i 1.51945i 0.650244 + 0.759726i \(0.274667\pi\)
−0.650244 + 0.759726i \(0.725333\pi\)
\(828\) 0 0
\(829\) −30.4929 −1.05906 −0.529530 0.848291i \(-0.677632\pi\)
−0.529530 + 0.848291i \(0.677632\pi\)
\(830\) 0 0
\(831\) −5.63961 9.76810i −0.195636 0.338852i
\(832\) 0 0
\(833\) 17.2606 30.9561i 0.598045 1.07256i
\(834\) 0 0
\(835\) −28.6802 + 49.6755i −0.992518 + 1.71909i
\(836\) 0 0
\(837\) −30.2539 17.4671i −1.04573 0.603752i
\(838\) 0 0
\(839\) −27.3088 15.7668i −0.942806 0.544329i −0.0519670 0.998649i \(-0.516549\pi\)
−0.890839 + 0.454320i \(0.849882\pi\)
\(840\) 0 0
\(841\) 11.0684 19.1711i 0.381670 0.661072i
\(842\) 0 0
\(843\) 5.83716i 0.201042i
\(844\) 0 0
\(845\) −52.2645 2.93940i −1.79795 0.101118i
\(846\) 0 0
\(847\) 4.38130 + 2.48606i 0.150543 + 0.0854220i
\(848\) 0 0
\(849\) −10.7528 −0.369035
\(850\) 0 0
\(851\) 8.68453 5.01402i 0.297702 0.171878i
\(852\) 0 0
\(853\) 49.9618i 1.71066i 0.518085 + 0.855329i \(0.326645\pi\)
−0.518085 + 0.855329i \(0.673355\pi\)
\(854\) 0 0
\(855\) −17.5944 30.4743i −0.601715 1.04220i
\(856\) 0 0
\(857\) −20.4955 + 35.4993i −0.700113 + 1.21263i 0.268313 + 0.963332i \(0.413534\pi\)
−0.968426 + 0.249300i \(0.919799\pi\)
\(858\) 0 0
\(859\) 22.7071 + 39.3298i 0.774756 + 1.34192i 0.934931 + 0.354829i \(0.115461\pi\)
−0.160175 + 0.987089i \(0.551206\pi\)
\(860\) 0 0
\(861\) 0.467089 0.00349186i 0.0159183 0.000119002i
\(862\) 0 0
\(863\) −45.5827 + 26.3172i −1.55165 + 0.895848i −0.553647 + 0.832751i \(0.686764\pi\)
−0.998007 + 0.0630969i \(0.979902\pi\)
\(864\) 0 0
\(865\) 69.7432 40.2662i 2.37134 1.36909i
\(866\) 0 0
\(867\) −2.61643 + 4.53179i −0.0888587 + 0.153908i
\(868\) 0 0
\(869\) 18.0739 10.4350i 0.613114 0.353982i
\(870\) 0 0
\(871\) −14.2926 4.26340i −0.484288 0.144460i
\(872\) 0 0
\(873\) 13.0229 + 7.51876i 0.440757 + 0.254471i
\(874\) 0 0
\(875\) 32.6729 57.5810i 1.10455 1.94659i
\(876\) 0 0
\(877\) 11.7224i 0.395838i 0.980218 + 0.197919i \(0.0634183\pi\)
−0.980218 + 0.197919i \(0.936582\pi\)
\(878\) 0 0
\(879\) −12.8851 7.43924i −0.434605 0.250919i
\(880\) 0 0
\(881\) −14.5273 25.1619i −0.489435 0.847727i 0.510491 0.859883i \(-0.329464\pi\)
−0.999926 + 0.0121562i \(0.996130\pi\)
\(882\) 0 0
\(883\) −41.9709 −1.41243 −0.706216 0.707996i \(-0.749599\pi\)
−0.706216 + 0.707996i \(0.749599\pi\)
\(884\) 0 0
\(885\) −8.23137 + 14.2572i −0.276695 + 0.479249i
\(886\) 0 0
\(887\) −18.4327 + 31.9265i −0.618911 + 1.07199i 0.370774 + 0.928723i \(0.379093\pi\)
−0.989685 + 0.143262i \(0.954241\pi\)
\(888\) 0 0
\(889\) −0.0662649 8.86394i −0.00222245 0.297287i
\(890\) 0 0
\(891\) 17.5861i 0.589155i
\(892\) 0 0
\(893\) 6.97597 + 12.0827i 0.233442 + 0.404333i
\(894\) 0 0
\(895\) 81.6086 47.1167i 2.72787 1.57494i
\(896\) 0 0
\(897\) −7.36719 7.79317i −0.245983 0.260206i
\(898\) 0 0
\(899\) 26.8162i 0.894370i
\(900\) 0 0
\(901\) 17.6613 0.588383
\(902\) 0 0
\(903\) −1.60660 + 0.943652i −0.0534642 + 0.0314028i
\(904\) 0 0
\(905\) −17.9696 + 10.3748i −0.597331 + 0.344869i
\(906\) 0 0
\(907\) 31.0746 1.03181 0.515907 0.856645i \(-0.327455\pi\)
0.515907 + 0.856645i \(0.327455\pi\)
\(908\) 0 0
\(909\) −4.26583 −0.141489
\(910\) 0 0
\(911\) 12.7180 0.421365 0.210682 0.977555i \(-0.432431\pi\)
0.210682 + 0.977555i \(0.432431\pi\)
\(912\) 0 0
\(913\) −31.6654 −1.04797
\(914\) 0 0
\(915\) −28.0837 + 16.2141i −0.928417 + 0.536022i
\(916\) 0 0
\(917\) −0.240717 32.1995i −0.00794918 1.06332i
\(918\) 0 0
\(919\) −10.5876 −0.349253 −0.174627 0.984635i \(-0.555872\pi\)
−0.174627 + 0.984635i \(0.555872\pi\)
\(920\) 0 0
\(921\) 2.17550i 0.0716852i
\(922\) 0 0
\(923\) 3.34942 3.16634i 0.110247 0.104221i
\(924\) 0 0
\(925\) −19.8384 + 11.4537i −0.652282 + 0.376595i
\(926\) 0 0
\(927\) −9.69255 16.7880i −0.318345 0.551390i
\(928\) 0 0
\(929\) 15.4183i 0.505857i −0.967485 0.252928i \(-0.918606\pi\)
0.967485 0.252928i \(-0.0813937\pi\)
\(930\) 0 0
\(931\) −19.9449 + 11.9163i −0.653668 + 0.390541i
\(932\) 0 0
\(933\) 2.61686 4.53253i 0.0856721 0.148388i
\(934\) 0 0
\(935\) −30.7452 + 53.2522i −1.00548 + 1.74153i
\(936\) 0 0
\(937\) −1.66353 −0.0543452 −0.0271726 0.999631i \(-0.508650\pi\)
−0.0271726 + 0.999631i \(0.508650\pi\)
\(938\) 0 0
\(939\) 5.46369 + 9.46339i 0.178301 + 0.308826i
\(940\) 0 0
\(941\) −25.8392 14.9183i −0.842335 0.486322i 0.0157224 0.999876i \(-0.494995\pi\)
−0.858057 + 0.513554i \(0.828329\pi\)
\(942\) 0 0
\(943\) 1.43052i 0.0465840i
\(944\) 0 0
\(945\) −36.3581 + 0.271806i −1.18273 + 0.00884184i
\(946\) 0 0
\(947\) 5.43043 + 3.13526i 0.176465 + 0.101882i 0.585631 0.810578i \(-0.300847\pi\)
−0.409166 + 0.912460i \(0.634180\pi\)
\(948\) 0 0
\(949\) 39.0725 36.9368i 1.26835 1.19902i
\(950\) 0 0
\(951\) 7.63418 4.40759i 0.247555 0.142926i
\(952\) 0 0
\(953\) 10.6219 18.3977i 0.344078 0.595960i −0.641108 0.767451i \(-0.721525\pi\)
0.985186 + 0.171491i \(0.0548583\pi\)
\(954\) 0 0
\(955\) 77.8996 44.9754i 2.52077 1.45537i
\(956\) 0 0
\(957\) −4.14572 + 2.39353i −0.134012 + 0.0773719i
\(958\) 0 0
\(959\) 9.16187 0.0684922i 0.295852 0.00221173i
\(960\) 0 0
\(961\) 36.8891 + 63.8938i 1.18997 + 2.06109i
\(962\) 0 0
\(963\) 12.1862 21.1072i 0.392696 0.680169i
\(964\) 0 0
\(965\) 20.7701 + 35.9749i 0.668614 + 1.15807i
\(966\) 0 0
\(967\) 28.1083i 0.903902i 0.892043 + 0.451951i \(0.149272\pi\)
−0.892043 + 0.451951i \(0.850728\pi\)
\(968\) 0 0
\(969\) 8.81785 5.09099i 0.283270 0.163546i
\(970\) 0 0
\(971\) 19.0275 0.610621 0.305310 0.952253i \(-0.401240\pi\)
0.305310 + 0.952253i \(0.401240\pi\)
\(972\) 0 0
\(973\) 20.9415 12.3002i 0.671354 0.394327i
\(974\) 0 0
\(975\) 16.8291 + 17.8022i 0.538964 + 0.570127i
\(976\) 0 0
\(977\) 60.5225i 1.93629i 0.250400 + 0.968143i \(0.419438\pi\)
−0.250400 + 0.968143i \(0.580562\pi\)
\(978\) 0 0
\(979\) 0.890828 1.54296i 0.0284710 0.0493132i
\(980\) 0 0
\(981\) −25.9674 14.9923i −0.829075 0.478666i
\(982\) 0 0
\(983\) 38.4381 + 22.1922i 1.22598 + 0.707823i 0.966188 0.257840i \(-0.0830109\pi\)
0.259797 + 0.965663i \(0.416344\pi\)
\(984\) 0 0
\(985\) 53.8151 93.2104i 1.71469 2.96993i
\(986\) 0 0
\(987\) 6.73808 0.0503725i 0.214476 0.00160337i
\(988\) 0 0
\(989\) −2.85310 4.94172i −0.0907234 0.157138i
\(990\) 0 0
\(991\) 45.4599 1.44408 0.722040 0.691851i \(-0.243205\pi\)
0.722040 + 0.691851i \(0.243205\pi\)
\(992\) 0 0
\(993\) 17.2766i 0.548255i
\(994\) 0 0
\(995\) 0.306538 + 0.176980i 0.00971791 + 0.00561064i
\(996\) 0 0
\(997\) −16.3250 28.2758i −0.517018 0.895502i −0.999805 0.0197639i \(-0.993709\pi\)
0.482786 0.875738i \(-0.339625\pi\)
\(998\) 0 0
\(999\) 6.03740 + 3.48569i 0.191015 + 0.110283i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 364.2.bq.a.361.6 yes 18
3.2 odd 2 3276.2.fe.i.361.1 18
7.2 even 3 364.2.bb.a.205.4 18
7.3 odd 6 2548.2.u.d.1765.6 18
7.4 even 3 2548.2.u.e.1765.4 18
7.5 odd 6 2548.2.bb.f.569.6 18
7.6 odd 2 2548.2.bq.f.361.4 18
13.4 even 6 364.2.bb.a.277.4 yes 18
21.2 odd 6 3276.2.hi.i.1297.9 18
39.17 odd 6 3276.2.hi.i.1369.9 18
91.4 even 6 2548.2.u.e.589.4 18
91.17 odd 6 2548.2.u.d.589.6 18
91.30 even 6 inner 364.2.bq.a.121.6 yes 18
91.69 odd 6 2548.2.bb.f.1733.6 18
91.82 odd 6 2548.2.bq.f.1941.4 18
273.212 odd 6 3276.2.fe.i.2305.1 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
364.2.bb.a.205.4 18 7.2 even 3
364.2.bb.a.277.4 yes 18 13.4 even 6
364.2.bq.a.121.6 yes 18 91.30 even 6 inner
364.2.bq.a.361.6 yes 18 1.1 even 1 trivial
2548.2.u.d.589.6 18 91.17 odd 6
2548.2.u.d.1765.6 18 7.3 odd 6
2548.2.u.e.589.4 18 91.4 even 6
2548.2.u.e.1765.4 18 7.4 even 3
2548.2.bb.f.569.6 18 7.5 odd 6
2548.2.bb.f.1733.6 18 91.69 odd 6
2548.2.bq.f.361.4 18 7.6 odd 2
2548.2.bq.f.1941.4 18 91.82 odd 6
3276.2.fe.i.361.1 18 3.2 odd 2
3276.2.fe.i.2305.1 18 273.212 odd 6
3276.2.hi.i.1297.9 18 21.2 odd 6
3276.2.hi.i.1369.9 18 39.17 odd 6