L(s) = 1 | + 2.98·3-s + (0.626 − 0.361i)5-s + 5.89·9-s + 2.58i·11-s + (0.896 + 3.49i)13-s + (1.86 − 1.07i)15-s + (−2.26 − 3.93i)17-s + 7.22i·19-s + (−0.0997 + 0.172i)23-s + (−2.23 + 3.87i)25-s + 8.64·27-s + (2.84 + 4.93i)29-s + (5.36 + 3.09i)31-s + 7.70i·33-s + (−4.01 − 2.32i)37-s + ⋯ |
L(s) = 1 | + 1.72·3-s + (0.280 − 0.161i)5-s + 1.96·9-s + 0.779i·11-s + (0.248 + 0.968i)13-s + (0.482 − 0.278i)15-s + (−0.550 − 0.953i)17-s + 1.65i·19-s + (−0.0208 + 0.0360i)23-s + (−0.447 + 0.775i)25-s + 1.66·27-s + (0.529 + 0.916i)29-s + (0.963 + 0.556i)31-s + 1.34i·33-s + (−0.660 − 0.381i)37-s + ⋯ |
Λ(s)=(=(2548s/2ΓC(s)L(s)(0.845−0.533i)Λ(2−s)
Λ(s)=(=(2548s/2ΓC(s+1/2)L(s)(0.845−0.533i)Λ(1−s)
Degree: |
2 |
Conductor: |
2548
= 22⋅72⋅13
|
Sign: |
0.845−0.533i
|
Analytic conductor: |
20.3458 |
Root analytic conductor: |
4.51064 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2548(361,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2548, ( :1/2), 0.845−0.533i)
|
Particular Values
L(1) |
≈ |
3.660777135 |
L(21) |
≈ |
3.660777135 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1 |
| 13 | 1+(−0.896−3.49i)T |
good | 3 | 1−2.98T+3T2 |
| 5 | 1+(−0.626+0.361i)T+(2.5−4.33i)T2 |
| 11 | 1−2.58iT−11T2 |
| 17 | 1+(2.26+3.93i)T+(−8.5+14.7i)T2 |
| 19 | 1−7.22iT−19T2 |
| 23 | 1+(0.0997−0.172i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−2.84−4.93i)T+(−14.5+25.1i)T2 |
| 31 | 1+(−5.36−3.09i)T+(15.5+26.8i)T2 |
| 37 | 1+(4.01+2.32i)T+(18.5+32.0i)T2 |
| 41 | 1+(−8.26+4.77i)T+(20.5−35.5i)T2 |
| 43 | 1+(−3.54+6.14i)T+(−21.5−37.2i)T2 |
| 47 | 1+(−0.838+0.484i)T+(23.5−40.7i)T2 |
| 53 | 1+(−2.13+3.69i)T+(−26.5−45.8i)T2 |
| 59 | 1+(−7.48+4.32i)T+(29.5−51.0i)T2 |
| 61 | 1+8.73T+61T2 |
| 67 | 1+2.73iT−67T2 |
| 71 | 1+(−0.0784−0.0453i)T+(35.5+61.4i)T2 |
| 73 | 1+(3.56+2.05i)T+(36.5+63.2i)T2 |
| 79 | 1+(3.96+6.86i)T+(−39.5+68.4i)T2 |
| 83 | 1+6.65iT−83T2 |
| 89 | 1+(12.2+7.06i)T+(44.5+77.0i)T2 |
| 97 | 1+(−1.09−0.630i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.838261380483597109727043110044, −8.472497042167133697265518993057, −7.33810788886002947577920602789, −7.13975639960289922225137269480, −5.92346157382717000358004135428, −4.75635101646456839669547996740, −4.01547463391556352978777853192, −3.22014007626498053791280722523, −2.17470728437372467708357205802, −1.57257452655174935348314333156,
1.02535750293550658023507396986, 2.55573076290977351127214317372, 2.72862689368366647366409812724, 3.88209192911069144222479127612, 4.56389463314289890341200807458, 5.90189019590505853363567565196, 6.57985195486832597177844471683, 7.62243660169443712818100252285, 8.217605902221525229591244669191, 8.684137292843395640364953821164