L(s) = 1 | − 1.22·3-s + (−2.34 + 1.35i)5-s − 1.48·9-s − 1.33i·11-s + (2.87 + 2.17i)13-s + (2.87 − 1.66i)15-s + (1.24 + 2.16i)17-s + 4.59i·19-s + (0.104 − 0.180i)23-s + (1.15 − 1.99i)25-s + 5.51·27-s + (−0.639 − 1.10i)29-s + (4.89 + 2.82i)31-s + 1.63i·33-s + (−2.07 − 1.19i)37-s + ⋯ |
L(s) = 1 | − 0.710·3-s + (−1.04 + 0.604i)5-s − 0.495·9-s − 0.401i·11-s + (0.798 + 0.601i)13-s + (0.743 − 0.429i)15-s + (0.302 + 0.524i)17-s + 1.05i·19-s + (0.0217 − 0.0376i)23-s + (0.230 − 0.399i)25-s + 1.06·27-s + (−0.118 − 0.205i)29-s + (0.878 + 0.507i)31-s + 0.285i·33-s + (−0.340 − 0.196i)37-s + ⋯ |
Λ(s)=(=(2548s/2ΓC(s)L(s)(−0.895+0.444i)Λ(2−s)
Λ(s)=(=(2548s/2ΓC(s+1/2)L(s)(−0.895+0.444i)Λ(1−s)
Degree: |
2 |
Conductor: |
2548
= 22⋅72⋅13
|
Sign: |
−0.895+0.444i
|
Analytic conductor: |
20.3458 |
Root analytic conductor: |
4.51064 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2548(361,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2548, ( :1/2), −0.895+0.444i)
|
Particular Values
L(1) |
≈ |
0.1442821619 |
L(21) |
≈ |
0.1442821619 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1 |
| 13 | 1+(−2.87−2.17i)T |
good | 3 | 1+1.22T+3T2 |
| 5 | 1+(2.34−1.35i)T+(2.5−4.33i)T2 |
| 11 | 1+1.33iT−11T2 |
| 17 | 1+(−1.24−2.16i)T+(−8.5+14.7i)T2 |
| 19 | 1−4.59iT−19T2 |
| 23 | 1+(−0.104+0.180i)T+(−11.5−19.9i)T2 |
| 29 | 1+(0.639+1.10i)T+(−14.5+25.1i)T2 |
| 31 | 1+(−4.89−2.82i)T+(15.5+26.8i)T2 |
| 37 | 1+(2.07+1.19i)T+(18.5+32.0i)T2 |
| 41 | 1+(2.55−1.47i)T+(20.5−35.5i)T2 |
| 43 | 1+(0.348−0.602i)T+(−21.5−37.2i)T2 |
| 47 | 1+(2.11−1.22i)T+(23.5−40.7i)T2 |
| 53 | 1+(1.09−1.89i)T+(−26.5−45.8i)T2 |
| 59 | 1+(4.87−2.81i)T+(29.5−51.0i)T2 |
| 61 | 1+12.3T+61T2 |
| 67 | 1+14.1iT−67T2 |
| 71 | 1+(1.70+0.984i)T+(35.5+61.4i)T2 |
| 73 | 1+(−10.7−6.21i)T+(36.5+63.2i)T2 |
| 79 | 1+(−4.16−7.21i)T+(−39.5+68.4i)T2 |
| 83 | 1+2.83iT−83T2 |
| 89 | 1+(10.3+5.99i)T+(44.5+77.0i)T2 |
| 97 | 1+(14.1+8.17i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.284006693116414788431042624209, −8.307115920139795618853190785542, −7.981584807507733617817166982889, −6.90171416319939063586124228240, −6.25310014419668925169272790667, −5.62529946087733080130184534502, −4.53025784412907327827133000467, −3.67673491582578100693322549375, −3.00584300755632241633451782287, −1.43743059282071135201590354740,
0.06576927156018149211050524156, 1.04621279135781085722294237544, 2.71936550248965195477191374573, 3.66460887683461883173863864011, 4.65559364373401351699080665863, 5.19105254793894779425565218883, 6.10259391483382254001648723097, 6.90860427100306668651545486375, 7.79887828377255553760771077880, 8.404396160514558559469077126624