L(s) = 1 | − 1.22·3-s + (−2.34 + 1.35i)5-s − 1.48·9-s − 1.33i·11-s + (2.87 + 2.17i)13-s + (2.87 − 1.66i)15-s + (1.24 + 2.16i)17-s + 4.59i·19-s + (0.104 − 0.180i)23-s + (1.15 − 1.99i)25-s + 5.51·27-s + (−0.639 − 1.10i)29-s + (4.89 + 2.82i)31-s + 1.63i·33-s + (−2.07 − 1.19i)37-s + ⋯ |
L(s) = 1 | − 0.710·3-s + (−1.04 + 0.604i)5-s − 0.495·9-s − 0.401i·11-s + (0.798 + 0.601i)13-s + (0.743 − 0.429i)15-s + (0.302 + 0.524i)17-s + 1.05i·19-s + (0.0217 − 0.0376i)23-s + (0.230 − 0.399i)25-s + 1.06·27-s + (−0.118 − 0.205i)29-s + (0.878 + 0.507i)31-s + 0.285i·33-s + (−0.340 − 0.196i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2548 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.895 + 0.444i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2548 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.895 + 0.444i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.1442821619\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1442821619\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
| 13 | \( 1 + (-2.87 - 2.17i)T \) |
good | 3 | \( 1 + 1.22T + 3T^{2} \) |
| 5 | \( 1 + (2.34 - 1.35i)T + (2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + 1.33iT - 11T^{2} \) |
| 17 | \( 1 + (-1.24 - 2.16i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 - 4.59iT - 19T^{2} \) |
| 23 | \( 1 + (-0.104 + 0.180i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (0.639 + 1.10i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-4.89 - 2.82i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (2.07 + 1.19i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (2.55 - 1.47i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (0.348 - 0.602i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (2.11 - 1.22i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (1.09 - 1.89i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (4.87 - 2.81i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + 12.3T + 61T^{2} \) |
| 67 | \( 1 + 14.1iT - 67T^{2} \) |
| 71 | \( 1 + (1.70 + 0.984i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-10.7 - 6.21i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-4.16 - 7.21i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 2.83iT - 83T^{2} \) |
| 89 | \( 1 + (10.3 + 5.99i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (14.1 + 8.17i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.284006693116414788431042624209, −8.307115920139795618853190785542, −7.981584807507733617817166982889, −6.90171416319939063586124228240, −6.25310014419668925169272790667, −5.62529946087733080130184534502, −4.53025784412907327827133000467, −3.67673491582578100693322549375, −3.00584300755632241633451782287, −1.43743059282071135201590354740,
0.06576927156018149211050524156, 1.04621279135781085722294237544, 2.71936550248965195477191374573, 3.66460887683461883173863864011, 4.65559364373401351699080665863, 5.19105254793894779425565218883, 6.10259391483382254001648723097, 6.90860427100306668651545486375, 7.79887828377255553760771077880, 8.404396160514558559469077126624