L(s) = 1 | − 3·5-s + (1.5 − 2.59i)9-s + (1 + 1.73i)11-s + (2.5 − 2.59i)13-s + (−3.5 + 6.06i)17-s + (1 − 1.73i)19-s + (2 + 3.46i)23-s + 4·25-s + (−0.5 − 0.866i)29-s − 4·31-s + (−0.5 − 0.866i)37-s + (−1.5 − 2.59i)41-s + (3 − 5.19i)43-s + (−4.5 + 7.79i)45-s + 10·47-s + ⋯ |
L(s) = 1 | − 1.34·5-s + (0.5 − 0.866i)9-s + (0.301 + 0.522i)11-s + (0.693 − 0.720i)13-s + (−0.848 + 1.47i)17-s + (0.229 − 0.397i)19-s + (0.417 + 0.722i)23-s + 0.800·25-s + (−0.0928 − 0.160i)29-s − 0.718·31-s + (−0.0821 − 0.142i)37-s + (−0.234 − 0.405i)41-s + (0.457 − 0.792i)43-s + (−0.670 + 1.16i)45-s + 1.45·47-s + ⋯ |
Λ(s)=(=(2548s/2ΓC(s)L(s)(0.522+0.852i)Λ(2−s)
Λ(s)=(=(2548s/2ΓC(s+1/2)L(s)(0.522+0.852i)Λ(1−s)
Degree: |
2 |
Conductor: |
2548
= 22⋅72⋅13
|
Sign: |
0.522+0.852i
|
Analytic conductor: |
20.3458 |
Root analytic conductor: |
4.51064 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2548(393,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2548, ( :1/2), 0.522+0.852i)
|
Particular Values
L(1) |
≈ |
1.212465437 |
L(21) |
≈ |
1.212465437 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1 |
| 13 | 1+(−2.5+2.59i)T |
good | 3 | 1+(−1.5+2.59i)T2 |
| 5 | 1+3T+5T2 |
| 11 | 1+(−1−1.73i)T+(−5.5+9.52i)T2 |
| 17 | 1+(3.5−6.06i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−1+1.73i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−2−3.46i)T+(−11.5+19.9i)T2 |
| 29 | 1+(0.5+0.866i)T+(−14.5+25.1i)T2 |
| 31 | 1+4T+31T2 |
| 37 | 1+(0.5+0.866i)T+(−18.5+32.0i)T2 |
| 41 | 1+(1.5+2.59i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−3+5.19i)T+(−21.5−37.2i)T2 |
| 47 | 1−10T+47T2 |
| 53 | 1+7T+53T2 |
| 59 | 1+(−3+5.19i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−3.5+6.06i)T+(−30.5−52.8i)T2 |
| 67 | 1+(4+6.92i)T+(−33.5+58.0i)T2 |
| 71 | 1+(−3+5.19i)T+(−35.5−61.4i)T2 |
| 73 | 1−11T+73T2 |
| 79 | 1+14T+79T2 |
| 83 | 1−14T+83T2 |
| 89 | 1+(5+8.66i)T+(−44.5+77.0i)T2 |
| 97 | 1+(−1+1.73i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.771533196099515226546872989751, −7.963161202791244164806841281602, −7.29976089567537064456536202350, −6.60547740762340882038418690499, −5.73652921882286817945591531776, −4.58671649043391313875551568453, −3.80506928903124666121220395684, −3.42700793818715616641761581894, −1.82193537847506765450927324581, −0.52528546197402985772811021165,
0.960025583495519507257773129472, 2.37465898505501122014658200883, 3.46287247027335276241163590520, 4.28696826401480677940843569730, 4.83395384720296235533461168517, 5.96888221250178225841222573394, 7.04847782351937394323935321024, 7.35503276788284135711758507685, 8.318224048353224040721873255330, 8.834407231177779058629724143036