L(s) = 1 | − 3·5-s + (1.5 − 2.59i)9-s + (1 + 1.73i)11-s + (2.5 − 2.59i)13-s + (−3.5 + 6.06i)17-s + (1 − 1.73i)19-s + (2 + 3.46i)23-s + 4·25-s + (−0.5 − 0.866i)29-s − 4·31-s + (−0.5 − 0.866i)37-s + (−1.5 − 2.59i)41-s + (3 − 5.19i)43-s + (−4.5 + 7.79i)45-s + 10·47-s + ⋯ |
L(s) = 1 | − 1.34·5-s + (0.5 − 0.866i)9-s + (0.301 + 0.522i)11-s + (0.693 − 0.720i)13-s + (−0.848 + 1.47i)17-s + (0.229 − 0.397i)19-s + (0.417 + 0.722i)23-s + 0.800·25-s + (−0.0928 − 0.160i)29-s − 0.718·31-s + (−0.0821 − 0.142i)37-s + (−0.234 − 0.405i)41-s + (0.457 − 0.792i)43-s + (−0.670 + 1.16i)45-s + 1.45·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2548 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.522 + 0.852i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2548 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.522 + 0.852i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.212465437\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.212465437\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
| 13 | \( 1 + (-2.5 + 2.59i)T \) |
good | 3 | \( 1 + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + 3T + 5T^{2} \) |
| 11 | \( 1 + (-1 - 1.73i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (3.5 - 6.06i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-1 + 1.73i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-2 - 3.46i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (0.5 + 0.866i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 4T + 31T^{2} \) |
| 37 | \( 1 + (0.5 + 0.866i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (1.5 + 2.59i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-3 + 5.19i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 10T + 47T^{2} \) |
| 53 | \( 1 + 7T + 53T^{2} \) |
| 59 | \( 1 + (-3 + 5.19i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.5 + 6.06i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (4 + 6.92i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-3 + 5.19i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 11T + 73T^{2} \) |
| 79 | \( 1 + 14T + 79T^{2} \) |
| 83 | \( 1 - 14T + 83T^{2} \) |
| 89 | \( 1 + (5 + 8.66i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-1 + 1.73i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.771533196099515226546872989751, −7.963161202791244164806841281602, −7.29976089567537064456536202350, −6.60547740762340882038418690499, −5.73652921882286817945591531776, −4.58671649043391313875551568453, −3.80506928903124666121220395684, −3.42700793818715616641761581894, −1.82193537847506765450927324581, −0.52528546197402985772811021165,
0.960025583495519507257773129472, 2.37465898505501122014658200883, 3.46287247027335276241163590520, 4.28696826401480677940843569730, 4.83395384720296235533461168517, 5.96888221250178225841222573394, 7.04847782351937394323935321024, 7.35503276788284135711758507685, 8.318224048353224040721873255330, 8.834407231177779058629724143036