Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [2548,2,Mod(393,2548)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2548, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 0, 2]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2548.393");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 2548.k (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 364) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a primitive root of unity . We also show the integral -expansion of the trace form.
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
393.1 |
|
0 | 0 | 0 | −3.00000 | 0 | 0 | 0 | 1.50000 | − | 2.59808i | 0 | ||||||||||||||||||||||
1569.1 | 0 | 0 | 0 | −3.00000 | 0 | 0 | 0 | 1.50000 | + | 2.59808i | 0 | |||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
13.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 2548.2.k.b | 2 | |
7.b | odd | 2 | 1 | 364.2.k.b | ✓ | 2 | |
7.c | even | 3 | 1 | 2548.2.i.f | 2 | ||
7.c | even | 3 | 1 | 2548.2.l.f | 2 | ||
7.d | odd | 6 | 1 | 2548.2.i.c | 2 | ||
7.d | odd | 6 | 1 | 2548.2.l.c | 2 | ||
13.c | even | 3 | 1 | inner | 2548.2.k.b | 2 | |
21.c | even | 2 | 1 | 3276.2.z.a | 2 | ||
28.d | even | 2 | 1 | 1456.2.s.d | 2 | ||
91.g | even | 3 | 1 | 2548.2.i.f | 2 | ||
91.h | even | 3 | 1 | 2548.2.l.f | 2 | ||
91.m | odd | 6 | 1 | 2548.2.i.c | 2 | ||
91.n | odd | 6 | 1 | 364.2.k.b | ✓ | 2 | |
91.n | odd | 6 | 1 | 4732.2.a.f | 1 | ||
91.t | odd | 6 | 1 | 4732.2.a.b | 1 | ||
91.v | odd | 6 | 1 | 2548.2.l.c | 2 | ||
91.bc | even | 12 | 2 | 4732.2.g.d | 2 | ||
273.bn | even | 6 | 1 | 3276.2.z.a | 2 | ||
364.v | even | 6 | 1 | 1456.2.s.d | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
364.2.k.b | ✓ | 2 | 7.b | odd | 2 | 1 | |
364.2.k.b | ✓ | 2 | 91.n | odd | 6 | 1 | |
1456.2.s.d | 2 | 28.d | even | 2 | 1 | ||
1456.2.s.d | 2 | 364.v | even | 6 | 1 | ||
2548.2.i.c | 2 | 7.d | odd | 6 | 1 | ||
2548.2.i.c | 2 | 91.m | odd | 6 | 1 | ||
2548.2.i.f | 2 | 7.c | even | 3 | 1 | ||
2548.2.i.f | 2 | 91.g | even | 3 | 1 | ||
2548.2.k.b | 2 | 1.a | even | 1 | 1 | trivial | |
2548.2.k.b | 2 | 13.c | even | 3 | 1 | inner | |
2548.2.l.c | 2 | 7.d | odd | 6 | 1 | ||
2548.2.l.c | 2 | 91.v | odd | 6 | 1 | ||
2548.2.l.f | 2 | 7.c | even | 3 | 1 | ||
2548.2.l.f | 2 | 91.h | even | 3 | 1 | ||
3276.2.z.a | 2 | 21.c | even | 2 | 1 | ||
3276.2.z.a | 2 | 273.bn | even | 6 | 1 | ||
4732.2.a.b | 1 | 91.t | odd | 6 | 1 | ||
4732.2.a.f | 1 | 91.n | odd | 6 | 1 | ||
4732.2.g.d | 2 | 91.bc | even | 12 | 2 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|