L(s) = 1 | − 2.52·3-s + (−1.33 − 2.31i)5-s + 3.38·9-s − 2.14·11-s + (−2.05 + 2.96i)13-s + (3.37 + 5.83i)15-s + (−1.96 − 3.40i)17-s + 5.07·19-s + (−3.48 + 6.03i)23-s + (−1.06 + 1.83i)25-s − 0.960·27-s + (0.0611 + 0.106i)29-s + (−1.96 + 3.40i)31-s + 5.41·33-s + (−0.724 + 1.25i)37-s + ⋯ |
L(s) = 1 | − 1.45·3-s + (−0.596 − 1.03i)5-s + 1.12·9-s − 0.646·11-s + (−0.570 + 0.821i)13-s + (0.870 + 1.50i)15-s + (−0.476 − 0.825i)17-s + 1.16·19-s + (−0.726 + 1.25i)23-s + (−0.212 + 0.367i)25-s − 0.184·27-s + (0.0113 + 0.0196i)29-s + (−0.353 + 0.612i)31-s + 0.942·33-s + (−0.119 + 0.206i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2548 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.741 + 0.671i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2548 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.741 + 0.671i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.5498748078\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5498748078\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
| 13 | \( 1 + (2.05 - 2.96i)T \) |
good | 3 | \( 1 + 2.52T + 3T^{2} \) |
| 5 | \( 1 + (1.33 + 2.31i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + 2.14T + 11T^{2} \) |
| 17 | \( 1 + (1.96 + 3.40i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 - 5.07T + 19T^{2} \) |
| 23 | \( 1 + (3.48 - 6.03i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.0611 - 0.106i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (1.96 - 3.40i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (0.724 - 1.25i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-2.29 - 3.97i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (0.997 - 1.72i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-4.35 - 7.54i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-0.0515 + 0.0892i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (4.60 + 7.97i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + 13.0T + 61T^{2} \) |
| 67 | \( 1 + 7.27T + 67T^{2} \) |
| 71 | \( 1 + (-5.76 + 9.98i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (4.53 - 7.86i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-0.409 - 0.708i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 13.1T + 83T^{2} \) |
| 89 | \( 1 + (-7.50 + 13.0i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-9.49 + 16.4i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.976912868632199975146607369684, −7.78289653676421805631535892769, −7.37520574778216750961105181761, −6.36053908617028907764290299234, −5.55852010057712242773407238392, −4.83107336339794050725524009083, −4.51025057632657633182941575218, −3.16487212013591831968178080582, −1.60780410794389725190108186443, −0.45151403228862271376371805003,
0.55198531179334388361879941084, 2.30742312885888431569756592018, 3.32760953608167629362486609509, 4.33469512082626019491489188556, 5.23328609753019067256147743596, 5.89853001974281706079860120164, 6.59406733696733477731276896007, 7.41989127685686027076645577333, 7.87687086969086339182354737945, 9.024772461607119401488919657703