Properties

Label 2-2548-91.81-c1-0-16
Degree 22
Conductor 25482548
Sign 0.741+0.671i0.741 + 0.671i
Analytic cond. 20.345820.3458
Root an. cond. 4.510644.51064
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.52·3-s + (−1.33 − 2.31i)5-s + 3.38·9-s − 2.14·11-s + (−2.05 + 2.96i)13-s + (3.37 + 5.83i)15-s + (−1.96 − 3.40i)17-s + 5.07·19-s + (−3.48 + 6.03i)23-s + (−1.06 + 1.83i)25-s − 0.960·27-s + (0.0611 + 0.106i)29-s + (−1.96 + 3.40i)31-s + 5.41·33-s + (−0.724 + 1.25i)37-s + ⋯
L(s)  = 1  − 1.45·3-s + (−0.596 − 1.03i)5-s + 1.12·9-s − 0.646·11-s + (−0.570 + 0.821i)13-s + (0.870 + 1.50i)15-s + (−0.476 − 0.825i)17-s + 1.16·19-s + (−0.726 + 1.25i)23-s + (−0.212 + 0.367i)25-s − 0.184·27-s + (0.0113 + 0.0196i)29-s + (−0.353 + 0.612i)31-s + 0.942·33-s + (−0.119 + 0.206i)37-s + ⋯

Functional equation

Λ(s)=(2548s/2ΓC(s)L(s)=((0.741+0.671i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 2548 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.741 + 0.671i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(2548s/2ΓC(s+1/2)L(s)=((0.741+0.671i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 2548 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.741 + 0.671i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 25482548    =    2272132^{2} \cdot 7^{2} \cdot 13
Sign: 0.741+0.671i0.741 + 0.671i
Analytic conductor: 20.345820.3458
Root analytic conductor: 4.510644.51064
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ2548(1537,)\chi_{2548} (1537, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 2548, ( :1/2), 0.741+0.671i)(2,\ 2548,\ (\ :1/2),\ 0.741 + 0.671i)

Particular Values

L(1)L(1) \approx 0.54987480780.5498748078
L(12)L(\frac12) \approx 0.54987480780.5498748078
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
7 1 1
13 1+(2.052.96i)T 1 + (2.05 - 2.96i)T
good3 1+2.52T+3T2 1 + 2.52T + 3T^{2}
5 1+(1.33+2.31i)T+(2.5+4.33i)T2 1 + (1.33 + 2.31i)T + (-2.5 + 4.33i)T^{2}
11 1+2.14T+11T2 1 + 2.14T + 11T^{2}
17 1+(1.96+3.40i)T+(8.5+14.7i)T2 1 + (1.96 + 3.40i)T + (-8.5 + 14.7i)T^{2}
19 15.07T+19T2 1 - 5.07T + 19T^{2}
23 1+(3.486.03i)T+(11.519.9i)T2 1 + (3.48 - 6.03i)T + (-11.5 - 19.9i)T^{2}
29 1+(0.06110.106i)T+(14.5+25.1i)T2 1 + (-0.0611 - 0.106i)T + (-14.5 + 25.1i)T^{2}
31 1+(1.963.40i)T+(15.526.8i)T2 1 + (1.96 - 3.40i)T + (-15.5 - 26.8i)T^{2}
37 1+(0.7241.25i)T+(18.532.0i)T2 1 + (0.724 - 1.25i)T + (-18.5 - 32.0i)T^{2}
41 1+(2.293.97i)T+(20.5+35.5i)T2 1 + (-2.29 - 3.97i)T + (-20.5 + 35.5i)T^{2}
43 1+(0.9971.72i)T+(21.537.2i)T2 1 + (0.997 - 1.72i)T + (-21.5 - 37.2i)T^{2}
47 1+(4.357.54i)T+(23.5+40.7i)T2 1 + (-4.35 - 7.54i)T + (-23.5 + 40.7i)T^{2}
53 1+(0.0515+0.0892i)T+(26.545.8i)T2 1 + (-0.0515 + 0.0892i)T + (-26.5 - 45.8i)T^{2}
59 1+(4.60+7.97i)T+(29.5+51.0i)T2 1 + (4.60 + 7.97i)T + (-29.5 + 51.0i)T^{2}
61 1+13.0T+61T2 1 + 13.0T + 61T^{2}
67 1+7.27T+67T2 1 + 7.27T + 67T^{2}
71 1+(5.76+9.98i)T+(35.561.4i)T2 1 + (-5.76 + 9.98i)T + (-35.5 - 61.4i)T^{2}
73 1+(4.537.86i)T+(36.563.2i)T2 1 + (4.53 - 7.86i)T + (-36.5 - 63.2i)T^{2}
79 1+(0.4090.708i)T+(39.5+68.4i)T2 1 + (-0.409 - 0.708i)T + (-39.5 + 68.4i)T^{2}
83 113.1T+83T2 1 - 13.1T + 83T^{2}
89 1+(7.50+13.0i)T+(44.577.0i)T2 1 + (-7.50 + 13.0i)T + (-44.5 - 77.0i)T^{2}
97 1+(9.49+16.4i)T+(48.584.0i)T2 1 + (-9.49 + 16.4i)T + (-48.5 - 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−8.976912868632199975146607369684, −7.78289653676421805631535892769, −7.37520574778216750961105181761, −6.36053908617028907764290299234, −5.55852010057712242773407238392, −4.83107336339794050725524009083, −4.51025057632657633182941575218, −3.16487212013591831968178080582, −1.60780410794389725190108186443, −0.45151403228862271376371805003, 0.55198531179334388361879941084, 2.30742312885888431569756592018, 3.32760953608167629362486609509, 4.33469512082626019491489188556, 5.23328609753019067256147743596, 5.89853001974281706079860120164, 6.59406733696733477731276896007, 7.41989127685686027076645577333, 7.87687086969086339182354737945, 9.024772461607119401488919657703

Graph of the ZZ-function along the critical line