Properties

Label 2548.2.l.n
Level $2548$
Weight $2$
Character orbit 2548.l
Analytic conductor $20.346$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2548,2,Mod(373,2548)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2548, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2548.373");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2548 = 2^{2} \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2548.l (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.3458824350\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(9\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - x^{17} + 19 x^{16} - 16 x^{15} + 244 x^{14} - 181 x^{13} + 1600 x^{12} - 607 x^{11} + \cdots + 1296 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 3^{4} \)
Twist minimal: no (minimal twist has level 364)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{17}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{2} q^{3} + \beta_{9} q^{5} + (\beta_{3} + 1) q^{9} + \beta_{6} q^{11} - \beta_{12} q^{13} + (\beta_{17} - \beta_{14} - \beta_{13} + \cdots - 2) q^{15} + ( - \beta_{14} - \beta_{13} + \cdots - \beta_{6}) q^{17}+ \cdots + ( - \beta_{17} + \beta_{15} + \cdots - \beta_{2}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 2 q^{3} + 20 q^{9} - 4 q^{11} - 4 q^{13} - 10 q^{15} + 6 q^{17} - 2 q^{19} + 6 q^{23} - 5 q^{25} + 4 q^{27} + 2 q^{29} - 7 q^{31} - 28 q^{33} - 8 q^{37} + 17 q^{39} - 7 q^{41} - 2 q^{43} + 10 q^{45}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{18} - x^{17} + 19 x^{16} - 16 x^{15} + 244 x^{14} - 181 x^{13} + 1600 x^{12} - 607 x^{11} + \cdots + 1296 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 22\!\cdots\!28 \nu^{17} + \cdots - 92\!\cdots\!92 ) / 34\!\cdots\!13 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 18\!\cdots\!85 \nu^{17} + \cdots - 13\!\cdots\!40 ) / 34\!\cdots\!13 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 70\!\cdots\!47 \nu^{17} + \cdots + 48\!\cdots\!71 ) / 52\!\cdots\!95 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 28\!\cdots\!33 \nu^{17} + \cdots + 16\!\cdots\!76 ) / 13\!\cdots\!52 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 11\!\cdots\!57 \nu^{17} + \cdots + 42\!\cdots\!16 ) / 52\!\cdots\!95 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 39\!\cdots\!91 \nu^{17} + \cdots + 48\!\cdots\!68 ) / 52\!\cdots\!95 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 28\!\cdots\!33 \nu^{17} + \cdots - 16\!\cdots\!76 ) / 34\!\cdots\!13 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 19\!\cdots\!35 \nu^{17} + \cdots - 57\!\cdots\!44 ) / 20\!\cdots\!80 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 11\!\cdots\!64 \nu^{17} + \cdots + 15\!\cdots\!28 ) / 10\!\cdots\!39 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 23\!\cdots\!02 \nu^{17} + \cdots + 22\!\cdots\!43 ) / 17\!\cdots\!65 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( 30\!\cdots\!71 \nu^{17} + \cdots - 13\!\cdots\!59 ) / 17\!\cdots\!65 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 20\!\cdots\!63 \nu^{17} + \cdots - 47\!\cdots\!40 ) / 52\!\cdots\!95 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( 22\!\cdots\!90 \nu^{17} + \cdots + 44\!\cdots\!92 ) / 52\!\cdots\!95 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( 33\!\cdots\!51 \nu^{17} + \cdots + 70\!\cdots\!16 ) / 69\!\cdots\!60 \) Copy content Toggle raw display
\(\beta_{16}\)\(=\) \( ( 52\!\cdots\!39 \nu^{17} + \cdots + 16\!\cdots\!56 ) / 10\!\cdots\!39 \) Copy content Toggle raw display
\(\beta_{17}\)\(=\) \( ( 36\!\cdots\!27 \nu^{17} + \cdots + 36\!\cdots\!08 ) / 69\!\cdots\!60 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{8} - 4\beta_{5} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{17} - \beta_{15} - \beta_{10} + 2\beta_{7} - 6\beta_{2} - 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{17} + \beta_{15} + \beta_{14} + 2 \beta_{13} - \beta_{11} - 2 \beta_{9} + 10 \beta_{8} + \cdots - 28 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( - 2 \beta_{17} + 12 \beta_{16} + 11 \beta_{15} - 25 \beta_{14} - 5 \beta_{13} - 11 \beta_{12} + \cdots - 43 \beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( - 14 \beta_{12} + 14 \beta_{11} - 6 \beta_{10} + 21 \beta_{7} - 27 \beta_{6} - 30 \beta_{4} + \cdots + 230 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( - 106 \beta_{17} - 123 \beta_{16} + 35 \beta_{15} + 263 \beta_{14} + 85 \beta_{13} + 141 \beta_{12} + \cdots + 16 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( - 157 \beta_{17} + 114 \beta_{16} - 146 \beta_{15} - 302 \beta_{14} - 298 \beta_{13} + 146 \beta_{12} + \cdots - 254 \beta_1 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( 1449 \beta_{17} - 1449 \beta_{15} - 448 \beta_{12} + 448 \beta_{11} - 1221 \beta_{10} + 2661 \beta_{7} + \cdots + 277 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( 1366 \beta_{17} - 1557 \beta_{16} + 1660 \beta_{15} + 3757 \beta_{14} + 3143 \beta_{13} + 294 \beta_{12} + \cdots - 18622 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( - 5123 \beta_{17} + 12081 \beta_{16} + 9425 \beta_{15} - 26677 \beta_{14} - 12044 \beta_{13} + \cdots - 27139 \beta_1 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( 5202 \beta_{17} - 5202 \beta_{15} - 17252 \beta_{12} + 17252 \beta_{11} - 18831 \beta_{10} + \cdots + 175508 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( - 88768 \beta_{17} - 120024 \beta_{16} + 55706 \beta_{15} + 267329 \beta_{14} + 129439 \beta_{13} + \cdots - 108695 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( - 178561 \beta_{17} + 215088 \beta_{16} - 101756 \beta_{15} - 489242 \beta_{14} - 342616 \beta_{13} + \cdots - 437948 \beta_1 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( 1428192 \beta_{17} - 1428192 \beta_{15} - 590998 \beta_{12} + 590998 \beta_{11} - 1199103 \beta_{10} + \cdots + 1448905 \) Copy content Toggle raw display
\(\nu^{16}\)\(=\) \( 823504 \beta_{17} - 2382291 \beta_{16} + 1848118 \beta_{15} + 5368078 \beta_{14} + 3581528 \beta_{13} + \cdots - 16360906 \) Copy content Toggle raw display
\(\nu^{17}\)\(=\) \( - 6191582 \beta_{17} + 12043875 \beta_{16} + 7913018 \beta_{15} - 27060034 \beta_{14} + \cdots - 24751717 \beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2548\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(885\) \(1275\)
\(\chi(n)\) \(-\beta_{5}\) \(-1 + \beta_{5}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
373.1
1.49468 2.58887i
1.26295 2.18749i
0.789914 1.36817i
0.734808 1.27273i
−0.210627 + 0.364817i
−0.326032 + 0.564704i
−0.520270 + 0.901135i
−1.11606 + 1.93307i
−1.60936 + 2.78750i
1.49468 + 2.58887i
1.26295 + 2.18749i
0.789914 + 1.36817i
0.734808 + 1.27273i
−0.210627 0.364817i
−0.326032 0.564704i
−0.520270 0.901135i
−1.11606 1.93307i
−1.60936 2.78750i
0 −2.98937 0 2.11635 3.66562i 0 0 0 5.93631 0
373.2 0 −2.52589 0 −1.33439 + 2.31123i 0 0 0 3.38014 0
373.3 0 −1.57983 0 −0.985205 + 1.70642i 0 0 0 −0.504145 0
373.4 0 −1.46962 0 0.879363 1.52310i 0 0 0 −0.840227 0
373.5 0 0.421254 0 0.466726 0.808393i 0 0 0 −2.82254 0
373.6 0 0.652064 0 1.14588 1.98472i 0 0 0 −2.57481 0
373.7 0 1.04054 0 −1.59004 + 2.75404i 0 0 0 −1.91727 0
373.8 0 2.23212 0 −0.660291 + 1.14366i 0 0 0 1.98235 0
373.9 0 3.21873 0 −0.0383870 + 0.0664882i 0 0 0 7.36021 0
1537.1 0 −2.98937 0 2.11635 + 3.66562i 0 0 0 5.93631 0
1537.2 0 −2.52589 0 −1.33439 2.31123i 0 0 0 3.38014 0
1537.3 0 −1.57983 0 −0.985205 1.70642i 0 0 0 −0.504145 0
1537.4 0 −1.46962 0 0.879363 + 1.52310i 0 0 0 −0.840227 0
1537.5 0 0.421254 0 0.466726 + 0.808393i 0 0 0 −2.82254 0
1537.6 0 0.652064 0 1.14588 + 1.98472i 0 0 0 −2.57481 0
1537.7 0 1.04054 0 −1.59004 2.75404i 0 0 0 −1.91727 0
1537.8 0 2.23212 0 −0.660291 1.14366i 0 0 0 1.98235 0
1537.9 0 3.21873 0 −0.0383870 0.0664882i 0 0 0 7.36021 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 373.9
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
91.g even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2548.2.l.n 18
7.b odd 2 1 364.2.l.a yes 18
7.c even 3 1 2548.2.i.n 18
7.c even 3 1 2548.2.k.i 18
7.d odd 6 1 364.2.i.a 18
7.d odd 6 1 2548.2.k.h 18
13.c even 3 1 2548.2.i.n 18
21.c even 2 1 3276.2.x.k 18
21.g even 6 1 3276.2.u.k 18
91.g even 3 1 inner 2548.2.l.n 18
91.h even 3 1 2548.2.k.i 18
91.m odd 6 1 364.2.l.a yes 18
91.n odd 6 1 364.2.i.a 18
91.v odd 6 1 2548.2.k.h 18
273.bf even 6 1 3276.2.x.k 18
273.bn even 6 1 3276.2.u.k 18
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
364.2.i.a 18 7.d odd 6 1
364.2.i.a 18 91.n odd 6 1
364.2.l.a yes 18 7.b odd 2 1
364.2.l.a yes 18 91.m odd 6 1
2548.2.i.n 18 7.c even 3 1
2548.2.i.n 18 13.c even 3 1
2548.2.k.h 18 7.d odd 6 1
2548.2.k.h 18 91.v odd 6 1
2548.2.k.i 18 7.c even 3 1
2548.2.k.i 18 91.h even 3 1
2548.2.l.n 18 1.a even 1 1 trivial
2548.2.l.n 18 91.g even 3 1 inner
3276.2.u.k 18 21.g even 6 1
3276.2.u.k 18 273.bn even 6 1
3276.2.x.k 18 21.c even 2 1
3276.2.x.k 18 273.bf even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2548, [\chi])\):

\( T_{3}^{9} + T_{3}^{8} - 18T_{3}^{7} - 17T_{3}^{6} + 97T_{3}^{5} + 69T_{3}^{4} - 183T_{3}^{3} - 45T_{3}^{2} + 129T_{3} - 36 \) Copy content Toggle raw display
\( T_{5}^{18} + 25 T_{5}^{16} + 22 T_{5}^{15} + 445 T_{5}^{14} + 361 T_{5}^{13} + 3697 T_{5}^{12} + \cdots + 729 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{18} \) Copy content Toggle raw display
$3$ \( (T^{9} + T^{8} - 18 T^{7} + \cdots - 36)^{2} \) Copy content Toggle raw display
$5$ \( T^{18} + 25 T^{16} + \cdots + 729 \) Copy content Toggle raw display
$7$ \( T^{18} \) Copy content Toggle raw display
$11$ \( (T^{9} + 2 T^{8} + \cdots - 468)^{2} \) Copy content Toggle raw display
$13$ \( T^{18} + \cdots + 10604499373 \) Copy content Toggle raw display
$17$ \( T^{18} + \cdots + 38805848064 \) Copy content Toggle raw display
$19$ \( (T^{9} + T^{8} - 77 T^{7} + \cdots + 1896)^{2} \) Copy content Toggle raw display
$23$ \( T^{18} + \cdots + 141580617984 \) Copy content Toggle raw display
$29$ \( T^{18} - 2 T^{17} + \cdots + 927369 \) Copy content Toggle raw display
$31$ \( T^{18} + 7 T^{17} + \cdots + 2064969 \) Copy content Toggle raw display
$37$ \( T^{18} + \cdots + 287364612096 \) Copy content Toggle raw display
$41$ \( T^{18} + \cdots + 291104490681 \) Copy content Toggle raw display
$43$ \( T^{18} + \cdots + 256754010681 \) Copy content Toggle raw display
$47$ \( T^{18} + \cdots + 215391594609 \) Copy content Toggle raw display
$53$ \( T^{18} + \cdots + 1455498801 \) Copy content Toggle raw display
$59$ \( T^{18} + \cdots + 6347497291776 \) Copy content Toggle raw display
$61$ \( (T^{9} + T^{8} + \cdots + 10140682)^{2} \) Copy content Toggle raw display
$67$ \( (T^{9} + 29 T^{8} + \cdots + 7838036)^{2} \) Copy content Toggle raw display
$71$ \( T^{18} + \cdots + 3994485901641 \) Copy content Toggle raw display
$73$ \( T^{18} + \cdots + 123708070942569 \) Copy content Toggle raw display
$79$ \( T^{18} + \cdots + 55833279675889 \) Copy content Toggle raw display
$83$ \( (T^{9} - 15 T^{8} + \cdots - 874800)^{2} \) Copy content Toggle raw display
$89$ \( T^{18} + \cdots + 1557623810304 \) Copy content Toggle raw display
$97$ \( T^{18} + \cdots + 54\!\cdots\!09 \) Copy content Toggle raw display
show more
show less