Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [2548,2,Mod(373,2548)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2548, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 2, 4]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2548.373");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 2548.l (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 364) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
373.1 |
|
0 | −2.98937 | 0 | 2.11635 | − | 3.66562i | 0 | 0 | 0 | 5.93631 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
373.2 | 0 | −2.52589 | 0 | −1.33439 | + | 2.31123i | 0 | 0 | 0 | 3.38014 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
373.3 | 0 | −1.57983 | 0 | −0.985205 | + | 1.70642i | 0 | 0 | 0 | −0.504145 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
373.4 | 0 | −1.46962 | 0 | 0.879363 | − | 1.52310i | 0 | 0 | 0 | −0.840227 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
373.5 | 0 | 0.421254 | 0 | 0.466726 | − | 0.808393i | 0 | 0 | 0 | −2.82254 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
373.6 | 0 | 0.652064 | 0 | 1.14588 | − | 1.98472i | 0 | 0 | 0 | −2.57481 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
373.7 | 0 | 1.04054 | 0 | −1.59004 | + | 2.75404i | 0 | 0 | 0 | −1.91727 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
373.8 | 0 | 2.23212 | 0 | −0.660291 | + | 1.14366i | 0 | 0 | 0 | 1.98235 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
373.9 | 0 | 3.21873 | 0 | −0.0383870 | + | 0.0664882i | 0 | 0 | 0 | 7.36021 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1537.1 | 0 | −2.98937 | 0 | 2.11635 | + | 3.66562i | 0 | 0 | 0 | 5.93631 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1537.2 | 0 | −2.52589 | 0 | −1.33439 | − | 2.31123i | 0 | 0 | 0 | 3.38014 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1537.3 | 0 | −1.57983 | 0 | −0.985205 | − | 1.70642i | 0 | 0 | 0 | −0.504145 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1537.4 | 0 | −1.46962 | 0 | 0.879363 | + | 1.52310i | 0 | 0 | 0 | −0.840227 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1537.5 | 0 | 0.421254 | 0 | 0.466726 | + | 0.808393i | 0 | 0 | 0 | −2.82254 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1537.6 | 0 | 0.652064 | 0 | 1.14588 | + | 1.98472i | 0 | 0 | 0 | −2.57481 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1537.7 | 0 | 1.04054 | 0 | −1.59004 | − | 2.75404i | 0 | 0 | 0 | −1.91727 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1537.8 | 0 | 2.23212 | 0 | −0.660291 | − | 1.14366i | 0 | 0 | 0 | 1.98235 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1537.9 | 0 | 3.21873 | 0 | −0.0383870 | − | 0.0664882i | 0 | 0 | 0 | 7.36021 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
91.g | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 2548.2.l.n | 18 | |
7.b | odd | 2 | 1 | 364.2.l.a | yes | 18 | |
7.c | even | 3 | 1 | 2548.2.i.n | 18 | ||
7.c | even | 3 | 1 | 2548.2.k.i | 18 | ||
7.d | odd | 6 | 1 | 364.2.i.a | ✓ | 18 | |
7.d | odd | 6 | 1 | 2548.2.k.h | 18 | ||
13.c | even | 3 | 1 | 2548.2.i.n | 18 | ||
21.c | even | 2 | 1 | 3276.2.x.k | 18 | ||
21.g | even | 6 | 1 | 3276.2.u.k | 18 | ||
91.g | even | 3 | 1 | inner | 2548.2.l.n | 18 | |
91.h | even | 3 | 1 | 2548.2.k.i | 18 | ||
91.m | odd | 6 | 1 | 364.2.l.a | yes | 18 | |
91.n | odd | 6 | 1 | 364.2.i.a | ✓ | 18 | |
91.v | odd | 6 | 1 | 2548.2.k.h | 18 | ||
273.bf | even | 6 | 1 | 3276.2.x.k | 18 | ||
273.bn | even | 6 | 1 | 3276.2.u.k | 18 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
364.2.i.a | ✓ | 18 | 7.d | odd | 6 | 1 | |
364.2.i.a | ✓ | 18 | 91.n | odd | 6 | 1 | |
364.2.l.a | yes | 18 | 7.b | odd | 2 | 1 | |
364.2.l.a | yes | 18 | 91.m | odd | 6 | 1 | |
2548.2.i.n | 18 | 7.c | even | 3 | 1 | ||
2548.2.i.n | 18 | 13.c | even | 3 | 1 | ||
2548.2.k.h | 18 | 7.d | odd | 6 | 1 | ||
2548.2.k.h | 18 | 91.v | odd | 6 | 1 | ||
2548.2.k.i | 18 | 7.c | even | 3 | 1 | ||
2548.2.k.i | 18 | 91.h | even | 3 | 1 | ||
2548.2.l.n | 18 | 1.a | even | 1 | 1 | trivial | |
2548.2.l.n | 18 | 91.g | even | 3 | 1 | inner | |
3276.2.u.k | 18 | 21.g | even | 6 | 1 | ||
3276.2.u.k | 18 | 273.bn | even | 6 | 1 | ||
3276.2.x.k | 18 | 21.c | even | 2 | 1 | ||
3276.2.x.k | 18 | 273.bf | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|