L(s) = 1 | + 3.21·3-s + (−0.0383 − 0.0664i)5-s + 7.36·9-s − 2.11·11-s + (1.62 + 3.21i)13-s + (−0.123 − 0.214i)15-s + (3.61 + 6.25i)17-s + 0.676·19-s + (1.83 − 3.18i)23-s + (2.49 − 4.32i)25-s + 14.0·27-s + (−1.90 − 3.30i)29-s + (−2.07 + 3.60i)31-s − 6.82·33-s + (−4.05 + 7.01i)37-s + ⋯ |
L(s) = 1 | + 1.85·3-s + (−0.0171 − 0.0297i)5-s + 2.45·9-s − 0.639·11-s + (0.450 + 0.892i)13-s + (−0.0319 − 0.0552i)15-s + (0.876 + 1.51i)17-s + 0.155·19-s + (0.383 − 0.663i)23-s + (0.499 − 0.865i)25-s + 2.70·27-s + (−0.354 − 0.614i)29-s + (−0.373 + 0.646i)31-s − 1.18·33-s + (−0.666 + 1.15i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2548 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.943 - 0.331i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2548 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.943 - 0.331i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.786349647\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.786349647\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
| 13 | \( 1 + (-1.62 - 3.21i)T \) |
good | 3 | \( 1 - 3.21T + 3T^{2} \) |
| 5 | \( 1 + (0.0383 + 0.0664i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + 2.11T + 11T^{2} \) |
| 17 | \( 1 + (-3.61 - 6.25i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 - 0.676T + 19T^{2} \) |
| 23 | \( 1 + (-1.83 + 3.18i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (1.90 + 3.30i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (2.07 - 3.60i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (4.05 - 7.01i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (5.01 + 8.69i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.88 + 5.00i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-6.43 - 11.1i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-2.45 + 4.25i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-2.58 - 4.47i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + 7.36T + 61T^{2} \) |
| 67 | \( 1 + 7.79T + 67T^{2} \) |
| 71 | \( 1 + (-0.808 + 1.40i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-0.339 + 0.587i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-1.30 - 2.25i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 8.48T + 83T^{2} \) |
| 89 | \( 1 + (1.55 - 2.69i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-6.11 + 10.5i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.655524325096311330028090814078, −8.448328805837601563269496065907, −7.59578219729258835894283456123, −6.92157561343974345054228792439, −5.94755979507289716802980272121, −4.68451528788326288243770111729, −3.91205265940984148519095004359, −3.20867764002852468198760273259, −2.28142188230780146951516962478, −1.42679765838226883022973741202,
1.13164257338986033208208745816, 2.34234827248845606794797149211, 3.19298386644473198696155474503, 3.56301531964479120104450250516, 4.86443946292467940887734736214, 5.57567302001383743064692461112, 7.01923684149899862899247620010, 7.56618333772780173494653043637, 7.989497885518663197417590432804, 8.998762756221520284178649135474