L(s) = 1 | + 3.21·3-s + (−0.0383 − 0.0664i)5-s + 7.36·9-s − 2.11·11-s + (1.62 + 3.21i)13-s + (−0.123 − 0.214i)15-s + (3.61 + 6.25i)17-s + 0.676·19-s + (1.83 − 3.18i)23-s + (2.49 − 4.32i)25-s + 14.0·27-s + (−1.90 − 3.30i)29-s + (−2.07 + 3.60i)31-s − 6.82·33-s + (−4.05 + 7.01i)37-s + ⋯ |
L(s) = 1 | + 1.85·3-s + (−0.0171 − 0.0297i)5-s + 2.45·9-s − 0.639·11-s + (0.450 + 0.892i)13-s + (−0.0319 − 0.0552i)15-s + (0.876 + 1.51i)17-s + 0.155·19-s + (0.383 − 0.663i)23-s + (0.499 − 0.865i)25-s + 2.70·27-s + (−0.354 − 0.614i)29-s + (−0.373 + 0.646i)31-s − 1.18·33-s + (−0.666 + 1.15i)37-s + ⋯ |
Λ(s)=(=(2548s/2ΓC(s)L(s)(0.943−0.331i)Λ(2−s)
Λ(s)=(=(2548s/2ΓC(s+1/2)L(s)(0.943−0.331i)Λ(1−s)
Degree: |
2 |
Conductor: |
2548
= 22⋅72⋅13
|
Sign: |
0.943−0.331i
|
Analytic conductor: |
20.3458 |
Root analytic conductor: |
4.51064 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2548(1537,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2548, ( :1/2), 0.943−0.331i)
|
Particular Values
L(1) |
≈ |
3.786349647 |
L(21) |
≈ |
3.786349647 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1 |
| 13 | 1+(−1.62−3.21i)T |
good | 3 | 1−3.21T+3T2 |
| 5 | 1+(0.0383+0.0664i)T+(−2.5+4.33i)T2 |
| 11 | 1+2.11T+11T2 |
| 17 | 1+(−3.61−6.25i)T+(−8.5+14.7i)T2 |
| 19 | 1−0.676T+19T2 |
| 23 | 1+(−1.83+3.18i)T+(−11.5−19.9i)T2 |
| 29 | 1+(1.90+3.30i)T+(−14.5+25.1i)T2 |
| 31 | 1+(2.07−3.60i)T+(−15.5−26.8i)T2 |
| 37 | 1+(4.05−7.01i)T+(−18.5−32.0i)T2 |
| 41 | 1+(5.01+8.69i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−2.88+5.00i)T+(−21.5−37.2i)T2 |
| 47 | 1+(−6.43−11.1i)T+(−23.5+40.7i)T2 |
| 53 | 1+(−2.45+4.25i)T+(−26.5−45.8i)T2 |
| 59 | 1+(−2.58−4.47i)T+(−29.5+51.0i)T2 |
| 61 | 1+7.36T+61T2 |
| 67 | 1+7.79T+67T2 |
| 71 | 1+(−0.808+1.40i)T+(−35.5−61.4i)T2 |
| 73 | 1+(−0.339+0.587i)T+(−36.5−63.2i)T2 |
| 79 | 1+(−1.30−2.25i)T+(−39.5+68.4i)T2 |
| 83 | 1−8.48T+83T2 |
| 89 | 1+(1.55−2.69i)T+(−44.5−77.0i)T2 |
| 97 | 1+(−6.11+10.5i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.655524325096311330028090814078, −8.448328805837601563269496065907, −7.59578219729258835894283456123, −6.92157561343974345054228792439, −5.94755979507289716802980272121, −4.68451528788326288243770111729, −3.91205265940984148519095004359, −3.20867764002852468198760273259, −2.28142188230780146951516962478, −1.42679765838226883022973741202,
1.13164257338986033208208745816, 2.34234827248845606794797149211, 3.19298386644473198696155474503, 3.56301531964479120104450250516, 4.86443946292467940887734736214, 5.57567302001383743064692461112, 7.01923684149899862899247620010, 7.56618333772780173494653043637, 7.989497885518663197417590432804, 8.998762756221520284178649135474