L(s) = 1 | + 0.652·3-s + (1.14 − 1.98i)5-s − 2.57·9-s − 6.34·11-s + (−3.16 + 1.72i)13-s + (0.747 − 1.29i)15-s + (2.48 − 4.30i)17-s + 4.78·19-s + (1.88 + 3.27i)23-s + (−0.126 − 0.218i)25-s − 3.63·27-s + (−3.86 + 6.69i)29-s + (0.130 + 0.225i)31-s − 4.13·33-s + (2.52 + 4.37i)37-s + ⋯ |
L(s) = 1 | + 0.376·3-s + (0.512 − 0.887i)5-s − 0.858·9-s − 1.91·11-s + (−0.878 + 0.478i)13-s + (0.192 − 0.334i)15-s + (0.603 − 1.04i)17-s + 1.09·19-s + (0.393 + 0.682i)23-s + (−0.0252 − 0.0436i)25-s − 0.699·27-s + (−0.717 + 1.24i)29-s + (0.0233 + 0.0404i)31-s − 0.719·33-s + (0.415 + 0.720i)37-s + ⋯ |
Λ(s)=(=(2548s/2ΓC(s)L(s)(−0.586−0.809i)Λ(2−s)
Λ(s)=(=(2548s/2ΓC(s+1/2)L(s)(−0.586−0.809i)Λ(1−s)
Degree: |
2 |
Conductor: |
2548
= 22⋅72⋅13
|
Sign: |
−0.586−0.809i
|
Analytic conductor: |
20.3458 |
Root analytic conductor: |
4.51064 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2548(373,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2548, ( :1/2), −0.586−0.809i)
|
Particular Values
L(1) |
≈ |
0.4448060629 |
L(21) |
≈ |
0.4448060629 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1 |
| 13 | 1+(3.16−1.72i)T |
good | 3 | 1−0.652T+3T2 |
| 5 | 1+(−1.14+1.98i)T+(−2.5−4.33i)T2 |
| 11 | 1+6.34T+11T2 |
| 17 | 1+(−2.48+4.30i)T+(−8.5−14.7i)T2 |
| 19 | 1−4.78T+19T2 |
| 23 | 1+(−1.88−3.27i)T+(−11.5+19.9i)T2 |
| 29 | 1+(3.86−6.69i)T+(−14.5−25.1i)T2 |
| 31 | 1+(−0.130−0.225i)T+(−15.5+26.8i)T2 |
| 37 | 1+(−2.52−4.37i)T+(−18.5+32.0i)T2 |
| 41 | 1+(0.101−0.176i)T+(−20.5−35.5i)T2 |
| 43 | 1+(3.84+6.65i)T+(−21.5+37.2i)T2 |
| 47 | 1+(5.05−8.76i)T+(−23.5−40.7i)T2 |
| 53 | 1+(−1.59−2.76i)T+(−26.5+45.8i)T2 |
| 59 | 1+(7.34−12.7i)T+(−29.5−51.0i)T2 |
| 61 | 1+1.75T+61T2 |
| 67 | 1+4.94T+67T2 |
| 71 | 1+(−1.93−3.35i)T+(−35.5+61.4i)T2 |
| 73 | 1+(5.32+9.21i)T+(−36.5+63.2i)T2 |
| 79 | 1+(6.94−12.0i)T+(−39.5−68.4i)T2 |
| 83 | 1+0.589T+83T2 |
| 89 | 1+(−1.98−3.43i)T+(−44.5+77.0i)T2 |
| 97 | 1+(3.13+5.43i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.295712994447243143846804016948, −8.436493836054240604289444555698, −7.63214181492084070653746114249, −7.19205345788739433846088035464, −5.65332922451413178572271377114, −5.31685111909294541933395335725, −4.73806776349785007559886682841, −3.13327373024571252527116246187, −2.69860935257819154703465360667, −1.40531879773131658695050530817,
0.12876169783500276359488752841, 2.14362746898206890012162975356, 2.78546741743316626033625531278, 3.39166213523517920380746060590, 4.86732009248702564473367964326, 5.58047764877672797993867365431, 6.17353304338902887168943044711, 7.31370513960660838106458843190, 7.891496418114449198001348209618, 8.402893398555833585042691126457