L(s) = 1 | + 0.652·3-s + (1.14 − 1.98i)5-s − 2.57·9-s − 6.34·11-s + (−3.16 + 1.72i)13-s + (0.747 − 1.29i)15-s + (2.48 − 4.30i)17-s + 4.78·19-s + (1.88 + 3.27i)23-s + (−0.126 − 0.218i)25-s − 3.63·27-s + (−3.86 + 6.69i)29-s + (0.130 + 0.225i)31-s − 4.13·33-s + (2.52 + 4.37i)37-s + ⋯ |
L(s) = 1 | + 0.376·3-s + (0.512 − 0.887i)5-s − 0.858·9-s − 1.91·11-s + (−0.878 + 0.478i)13-s + (0.192 − 0.334i)15-s + (0.603 − 1.04i)17-s + 1.09·19-s + (0.393 + 0.682i)23-s + (−0.0252 − 0.0436i)25-s − 0.699·27-s + (−0.717 + 1.24i)29-s + (0.0233 + 0.0404i)31-s − 0.719·33-s + (0.415 + 0.720i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2548 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.586 - 0.809i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2548 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.586 - 0.809i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.4448060629\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4448060629\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
| 13 | \( 1 + (3.16 - 1.72i)T \) |
good | 3 | \( 1 - 0.652T + 3T^{2} \) |
| 5 | \( 1 + (-1.14 + 1.98i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + 6.34T + 11T^{2} \) |
| 17 | \( 1 + (-2.48 + 4.30i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 - 4.78T + 19T^{2} \) |
| 23 | \( 1 + (-1.88 - 3.27i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (3.86 - 6.69i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-0.130 - 0.225i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-2.52 - 4.37i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (0.101 - 0.176i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (3.84 + 6.65i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (5.05 - 8.76i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-1.59 - 2.76i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (7.34 - 12.7i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + 1.75T + 61T^{2} \) |
| 67 | \( 1 + 4.94T + 67T^{2} \) |
| 71 | \( 1 + (-1.93 - 3.35i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (5.32 + 9.21i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (6.94 - 12.0i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 0.589T + 83T^{2} \) |
| 89 | \( 1 + (-1.98 - 3.43i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (3.13 + 5.43i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.295712994447243143846804016948, −8.436493836054240604289444555698, −7.63214181492084070653746114249, −7.19205345788739433846088035464, −5.65332922451413178572271377114, −5.31685111909294541933395335725, −4.73806776349785007559886682841, −3.13327373024571252527116246187, −2.69860935257819154703465360667, −1.40531879773131658695050530817,
0.12876169783500276359488752841, 2.14362746898206890012162975356, 2.78546741743316626033625531278, 3.39166213523517920380746060590, 4.86732009248702564473367964326, 5.58047764877672797993867365431, 6.17353304338902887168943044711, 7.31370513960660838106458843190, 7.891496418114449198001348209618, 8.402893398555833585042691126457