L(s) = 1 | + 0.421·3-s + (0.466 − 0.808i)5-s − 2.82·9-s + 0.959·11-s + (3.50 − 0.864i)13-s + (0.196 − 0.340i)15-s + (1.43 − 2.47i)17-s + 2.32·19-s + (−3.51 − 6.08i)23-s + (2.06 + 3.57i)25-s − 2.45·27-s + (−1.84 + 3.18i)29-s + (−0.286 − 0.496i)31-s + 0.404·33-s + (0.734 + 1.27i)37-s + ⋯ |
L(s) = 1 | + 0.243·3-s + (0.208 − 0.361i)5-s − 0.940·9-s + 0.289·11-s + (0.970 − 0.239i)13-s + (0.0507 − 0.0879i)15-s + (0.346 − 0.600i)17-s + 0.533·19-s + (−0.732 − 1.26i)23-s + (0.412 + 0.715i)25-s − 0.472·27-s + (−0.341 + 0.592i)29-s + (−0.0514 − 0.0891i)31-s + 0.0703·33-s + (0.120 + 0.209i)37-s + ⋯ |
Λ(s)=(=(2548s/2ΓC(s)L(s)(0.362+0.932i)Λ(2−s)
Λ(s)=(=(2548s/2ΓC(s+1/2)L(s)(0.362+0.932i)Λ(1−s)
Degree: |
2 |
Conductor: |
2548
= 22⋅72⋅13
|
Sign: |
0.362+0.932i
|
Analytic conductor: |
20.3458 |
Root analytic conductor: |
4.51064 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2548(373,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2548, ( :1/2), 0.362+0.932i)
|
Particular Values
L(1) |
≈ |
1.825006519 |
L(21) |
≈ |
1.825006519 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1 |
| 13 | 1+(−3.50+0.864i)T |
good | 3 | 1−0.421T+3T2 |
| 5 | 1+(−0.466+0.808i)T+(−2.5−4.33i)T2 |
| 11 | 1−0.959T+11T2 |
| 17 | 1+(−1.43+2.47i)T+(−8.5−14.7i)T2 |
| 19 | 1−2.32T+19T2 |
| 23 | 1+(3.51+6.08i)T+(−11.5+19.9i)T2 |
| 29 | 1+(1.84−3.18i)T+(−14.5−25.1i)T2 |
| 31 | 1+(0.286+0.496i)T+(−15.5+26.8i)T2 |
| 37 | 1+(−0.734−1.27i)T+(−18.5+32.0i)T2 |
| 41 | 1+(−5.42+9.39i)T+(−20.5−35.5i)T2 |
| 43 | 1+(1.63+2.82i)T+(−21.5+37.2i)T2 |
| 47 | 1+(1.23−2.13i)T+(−23.5−40.7i)T2 |
| 53 | 1+(3.81+6.59i)T+(−26.5+45.8i)T2 |
| 59 | 1+(−3.11+5.39i)T+(−29.5−51.0i)T2 |
| 61 | 1+7.96T+61T2 |
| 67 | 1−11.5T+67T2 |
| 71 | 1+(−1.23−2.14i)T+(−35.5+61.4i)T2 |
| 73 | 1+(−3.49−6.04i)T+(−36.5+63.2i)T2 |
| 79 | 1+(−7.93+13.7i)T+(−39.5−68.4i)T2 |
| 83 | 1−5.06T+83T2 |
| 89 | 1+(8.07+13.9i)T+(−44.5+77.0i)T2 |
| 97 | 1+(4.24+7.35i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.766938895284323522135440502906, −8.163345210190629533430124000852, −7.29106315974764795660466329138, −6.34387002205453269490338279203, −5.63650960521565248025164527934, −4.92937244810118772264922204621, −3.76938808730666709464803914721, −3.05348677777688990068277012770, −1.93108740442817451232396623356, −0.63314550436035999645068591475,
1.23718970577902190617976156284, 2.41266971783672096046632228079, 3.36457701842827924374720147000, 4.04903215829355983589076611543, 5.28915167537721041187916603987, 6.06545023077443941437559878578, 6.53030355114039450480176757102, 7.80344070582286772518771918085, 8.125050838358834213754152178073, 9.142246132614663045995523349847