L(s) = 1 | + 0.421·3-s + (0.466 − 0.808i)5-s − 2.82·9-s + 0.959·11-s + (3.50 − 0.864i)13-s + (0.196 − 0.340i)15-s + (1.43 − 2.47i)17-s + 2.32·19-s + (−3.51 − 6.08i)23-s + (2.06 + 3.57i)25-s − 2.45·27-s + (−1.84 + 3.18i)29-s + (−0.286 − 0.496i)31-s + 0.404·33-s + (0.734 + 1.27i)37-s + ⋯ |
L(s) = 1 | + 0.243·3-s + (0.208 − 0.361i)5-s − 0.940·9-s + 0.289·11-s + (0.970 − 0.239i)13-s + (0.0507 − 0.0879i)15-s + (0.346 − 0.600i)17-s + 0.533·19-s + (−0.732 − 1.26i)23-s + (0.412 + 0.715i)25-s − 0.472·27-s + (−0.341 + 0.592i)29-s + (−0.0514 − 0.0891i)31-s + 0.0703·33-s + (0.120 + 0.209i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2548 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.362 + 0.932i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2548 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.362 + 0.932i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.825006519\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.825006519\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
| 13 | \( 1 + (-3.50 + 0.864i)T \) |
good | 3 | \( 1 - 0.421T + 3T^{2} \) |
| 5 | \( 1 + (-0.466 + 0.808i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 - 0.959T + 11T^{2} \) |
| 17 | \( 1 + (-1.43 + 2.47i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 - 2.32T + 19T^{2} \) |
| 23 | \( 1 + (3.51 + 6.08i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (1.84 - 3.18i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (0.286 + 0.496i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-0.734 - 1.27i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-5.42 + 9.39i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (1.63 + 2.82i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (1.23 - 2.13i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (3.81 + 6.59i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-3.11 + 5.39i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + 7.96T + 61T^{2} \) |
| 67 | \( 1 - 11.5T + 67T^{2} \) |
| 71 | \( 1 + (-1.23 - 2.14i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-3.49 - 6.04i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-7.93 + 13.7i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 5.06T + 83T^{2} \) |
| 89 | \( 1 + (8.07 + 13.9i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (4.24 + 7.35i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.766938895284323522135440502906, −8.163345210190629533430124000852, −7.29106315974764795660466329138, −6.34387002205453269490338279203, −5.63650960521565248025164527934, −4.92937244810118772264922204621, −3.76938808730666709464803914721, −3.05348677777688990068277012770, −1.93108740442817451232396623356, −0.63314550436035999645068591475,
1.23718970577902190617976156284, 2.41266971783672096046632228079, 3.36457701842827924374720147000, 4.04903215829355983589076611543, 5.28915167537721041187916603987, 6.06545023077443941437559878578, 6.53030355114039450480176757102, 7.80344070582286772518771918085, 8.125050838358834213754152178073, 9.142246132614663045995523349847