L(s) = 1 | + (−0.646 − 1.12i)3-s + (2.42 + 1.39i)5-s + (0.663 − 1.14i)9-s + (−0.894 + 0.516i)11-s + (1.79 − 3.12i)13-s − 3.62i·15-s + (−3.47 − 6.02i)17-s + (2.19 + 1.26i)19-s + (1.91 − 3.31i)23-s + (1.41 + 2.45i)25-s − 5.59·27-s − 5.10·29-s + (−3.28 + 1.89i)31-s + (1.15 + 0.668i)33-s + (−5.37 − 3.10i)37-s + ⋯ |
L(s) = 1 | + (−0.373 − 0.646i)3-s + (1.08 + 0.625i)5-s + (0.221 − 0.382i)9-s + (−0.269 + 0.155i)11-s + (0.498 − 0.866i)13-s − 0.934i·15-s + (−0.843 − 1.46i)17-s + (0.504 + 0.291i)19-s + (0.399 − 0.691i)23-s + (0.283 + 0.490i)25-s − 1.07·27-s − 0.947·29-s + (−0.589 + 0.340i)31-s + (0.201 + 0.116i)33-s + (−0.883 − 0.510i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2548 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.265 + 0.964i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2548 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.265 + 0.964i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.631345942\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.631345942\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
| 13 | \( 1 + (-1.79 + 3.12i)T \) |
good | 3 | \( 1 + (0.646 + 1.12i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (-2.42 - 1.39i)T + (2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (0.894 - 0.516i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (3.47 + 6.02i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.19 - 1.26i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.91 + 3.31i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 5.10T + 29T^{2} \) |
| 31 | \( 1 + (3.28 - 1.89i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (5.37 + 3.10i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 0.990iT - 41T^{2} \) |
| 43 | \( 1 - 0.560T + 43T^{2} \) |
| 47 | \( 1 + (-6.22 - 3.59i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (0.589 + 1.02i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-10.3 + 5.96i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-6.92 + 11.9i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (11.9 - 6.89i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 3.80iT - 71T^{2} \) |
| 73 | \( 1 + (-2.76 + 1.59i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (3.66 - 6.35i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 16.6iT - 83T^{2} \) |
| 89 | \( 1 + (-10.3 - 5.94i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 8.60iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.817465223685678971461965385490, −7.62945241813893774154822081920, −7.05598536639200086786370392464, −6.41268858195890665448981243316, −5.68566768357019661662208232006, −5.02142859601844271036803068104, −3.66859753443529566543017811438, −2.69515707420621254601574439080, −1.82227211736056268478490712343, −0.55285574257926996945556979252,
1.46681555373175937534649874508, 2.17956309832178880107563434532, 3.72156410900588993217823825890, 4.39591763131123108437421313211, 5.41849699199180869750751303693, 5.68782123378028480119407910179, 6.70251679431864288281456880162, 7.58122720920630288941467461571, 8.717432002620776791420848986587, 9.078285914610475076700582186403