L(s) = 1 | + (2.27 + 0.943i)3-s + (0.707 + 1.70i)5-s + (−0.665 + 0.665i)7-s + (2.18 + 2.18i)9-s + (−3.69 + 1.52i)11-s + (1.76 − 4.26i)13-s + 4.55i·15-s − 3.61i·17-s + (−0.194 + 0.470i)19-s + (−2.14 + 0.887i)21-s + (−1.33 − 1.33i)23-s + (1.12 − 1.12i)25-s + (0.0793 + 0.191i)27-s + (5.73 + 2.37i)29-s + 1.17·31-s + ⋯ |
L(s) = 1 | + (1.31 + 0.544i)3-s + (0.316 + 0.763i)5-s + (−0.251 + 0.251i)7-s + (0.726 + 0.726i)9-s + (−1.11 + 0.461i)11-s + (0.489 − 1.18i)13-s + 1.17i·15-s − 0.877i·17-s + (−0.0446 + 0.107i)19-s + (−0.467 + 0.193i)21-s + (−0.278 − 0.278i)23-s + (0.224 − 0.224i)25-s + (0.0152 + 0.0368i)27-s + (1.06 + 0.441i)29-s + 0.210·31-s + ⋯ |
Λ(s)=(=(256s/2ΓC(s)L(s)(0.677−0.735i)Λ(2−s)
Λ(s)=(=(256s/2ΓC(s+1/2)L(s)(0.677−0.735i)Λ(1−s)
Degree: |
2 |
Conductor: |
256
= 28
|
Sign: |
0.677−0.735i
|
Analytic conductor: |
2.04417 |
Root analytic conductor: |
1.42974 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ256(161,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 256, ( :1/2), 0.677−0.735i)
|
Particular Values
L(1) |
≈ |
1.67029+0.732344i |
L(21) |
≈ |
1.67029+0.732344i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
good | 3 | 1+(−2.27−0.943i)T+(2.12+2.12i)T2 |
| 5 | 1+(−0.707−1.70i)T+(−3.53+3.53i)T2 |
| 7 | 1+(0.665−0.665i)T−7iT2 |
| 11 | 1+(3.69−1.52i)T+(7.77−7.77i)T2 |
| 13 | 1+(−1.76+4.26i)T+(−9.19−9.19i)T2 |
| 17 | 1+3.61iT−17T2 |
| 19 | 1+(0.194−0.470i)T+(−13.4−13.4i)T2 |
| 23 | 1+(1.33+1.33i)T+23iT2 |
| 29 | 1+(−5.73−2.37i)T+(20.5+20.5i)T2 |
| 31 | 1−1.17T+31T2 |
| 37 | 1+(0.510+1.23i)T+(−26.1+26.1i)T2 |
| 41 | 1+(−1.66−1.66i)T+41iT2 |
| 43 | 1+(−2.54+1.05i)T+(30.4−30.4i)T2 |
| 47 | 1−1.49iT−47T2 |
| 53 | 1+(4.59−1.90i)T+(37.4−37.4i)T2 |
| 59 | 1+(2.04+4.94i)T+(−41.7+41.7i)T2 |
| 61 | 1+(13.7+5.67i)T+(43.1+43.1i)T2 |
| 67 | 1+(−3.40−1.41i)T+(47.3+47.3i)T2 |
| 71 | 1+(9.66−9.66i)T−71iT2 |
| 73 | 1+(7.55+7.55i)T+73iT2 |
| 79 | 1+17.2iT−79T2 |
| 83 | 1+(4.82−11.6i)T+(−58.6−58.6i)T2 |
| 89 | 1+(5.43−5.43i)T−89iT2 |
| 97 | 1−6.15T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.33237726444144951665095674154, −10.74714163105570336796922381075, −10.21088264341115487366520611448, −9.310875917545369181562622993160, −8.278745240791381085133875216166, −7.49258656547313816141171353779, −6.10951489616499137833955215784, −4.72997426131601434766826327422, −3.13480849823815688941258066433, −2.61072250907534595217220327359,
1.65217223939414474868361680920, 3.01235023400757348674761997961, 4.37479162408301729588453541661, 5.88121184346834481717863397976, 7.14155904122763631926890493732, 8.248646199624022227795482123459, 8.743822400704179209512716267062, 9.721810163539327057362832596716, 10.85241106493075917471854145437, 12.18903404768883381025804725230