Properties

Label 256.2.g.d.161.2
Level $256$
Weight $2$
Character 256.161
Analytic conductor $2.044$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [256,2,Mod(33,256)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(256, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("256.33");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 256 = 2^{8} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 256.g (of order \(8\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.04417029174\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{8})\)
Coefficient field: 8.0.18939904.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 14x^{6} - 28x^{5} + 43x^{4} - 44x^{3} + 30x^{2} - 12x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 32)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 161.2
Root \(0.500000 + 1.44392i\) of defining polynomial
Character \(\chi\) \(=\) 256.161
Dual form 256.2.g.d.97.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.27882 + 0.943920i) q^{3} +(0.707107 + 1.70711i) q^{5} +(-0.665096 + 0.665096i) q^{7} +(2.18073 + 2.18073i) q^{9} +(-3.69304 + 1.52971i) q^{11} +(1.76652 - 4.26475i) q^{13} +4.55765i q^{15} -3.61706i q^{17} +(-0.194802 + 0.470294i) q^{19} +(-2.14343 + 0.887839i) q^{21} +(-1.33490 - 1.33490i) q^{23} +(1.12132 - 1.12132i) q^{25} +(0.0793096 + 0.191470i) q^{27} +(5.73838 + 2.37691i) q^{29} +1.17157 q^{31} -9.85970 q^{33} +(-1.60568 - 0.665096i) q^{35} +(-0.510925 - 1.23348i) q^{37} +(8.05117 - 8.05117i) q^{39} +(1.66981 + 1.66981i) q^{41} +(2.54960 - 1.05608i) q^{43} +(-2.18073 + 5.26475i) q^{45} +1.49824i q^{47} +6.11529i q^{49} +(3.41421 - 8.24264i) q^{51} +(-4.59495 + 1.90329i) q^{53} +(-5.22274 - 5.22274i) q^{55} +(-0.887839 + 0.887839i) q^{57} +(-2.04784 - 4.94392i) q^{59} +(-13.7102 - 5.67897i) q^{61} -2.90079 q^{63} +8.52951 q^{65} +(3.40617 + 1.41088i) q^{67} +(-1.78197 - 4.30205i) q^{69} +(-9.66157 + 9.66157i) q^{71} +(-7.55765 - 7.55765i) q^{73} +(3.61373 - 1.49685i) q^{75} +(1.43882 - 3.47363i) q^{77} -17.2176i q^{79} -8.74088i q^{81} +(-4.82981 + 11.6602i) q^{83} +(6.17471 - 2.55765i) q^{85} +(10.8331 + 10.8331i) q^{87} +(-5.43882 + 5.43882i) q^{89} +(1.66157 + 4.01138i) q^{91} +(2.66981 + 1.10587i) q^{93} -0.940588 q^{95} +6.15862 q^{97} +(-11.3894 - 4.71765i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{3} - 8 q^{7} - 4 q^{11} + 8 q^{13} - 4 q^{19} - 8 q^{23} - 8 q^{25} - 8 q^{27} + 32 q^{31} - 16 q^{33} - 16 q^{35} + 8 q^{37} + 16 q^{39} + 8 q^{41} + 12 q^{43} + 16 q^{51} - 8 q^{53} - 16 q^{55}+ \cdots - 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/256\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(255\)
\(\chi(n)\) \(e\left(\frac{3}{8}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.27882 + 0.943920i 1.31568 + 0.544972i 0.926536 0.376205i \(-0.122771\pi\)
0.389143 + 0.921177i \(0.372771\pi\)
\(4\) 0 0
\(5\) 0.707107 + 1.70711i 0.316228 + 0.763441i 0.999448 + 0.0332288i \(0.0105790\pi\)
−0.683220 + 0.730213i \(0.739421\pi\)
\(6\) 0 0
\(7\) −0.665096 + 0.665096i −0.251383 + 0.251383i −0.821537 0.570155i \(-0.806883\pi\)
0.570155 + 0.821537i \(0.306883\pi\)
\(8\) 0 0
\(9\) 2.18073 + 2.18073i 0.726911 + 0.726911i
\(10\) 0 0
\(11\) −3.69304 + 1.52971i −1.11349 + 0.461224i −0.862139 0.506672i \(-0.830876\pi\)
−0.251353 + 0.967895i \(0.580876\pi\)
\(12\) 0 0
\(13\) 1.76652 4.26475i 0.489944 1.18283i −0.464804 0.885414i \(-0.653875\pi\)
0.954748 0.297416i \(-0.0961249\pi\)
\(14\) 0 0
\(15\) 4.55765i 1.17678i
\(16\) 0 0
\(17\) 3.61706i 0.877266i −0.898666 0.438633i \(-0.855463\pi\)
0.898666 0.438633i \(-0.144537\pi\)
\(18\) 0 0
\(19\) −0.194802 + 0.470294i −0.0446907 + 0.107893i −0.944649 0.328084i \(-0.893597\pi\)
0.899958 + 0.435977i \(0.143597\pi\)
\(20\) 0 0
\(21\) −2.14343 + 0.887839i −0.467736 + 0.193742i
\(22\) 0 0
\(23\) −1.33490 1.33490i −0.278347 0.278347i 0.554102 0.832449i \(-0.313062\pi\)
−0.832449 + 0.554102i \(0.813062\pi\)
\(24\) 0 0
\(25\) 1.12132 1.12132i 0.224264 0.224264i
\(26\) 0 0
\(27\) 0.0793096 + 0.191470i 0.0152631 + 0.0368485i
\(28\) 0 0
\(29\) 5.73838 + 2.37691i 1.06559 + 0.441382i 0.845433 0.534082i \(-0.179343\pi\)
0.220158 + 0.975464i \(0.429343\pi\)
\(30\) 0 0
\(31\) 1.17157 0.210421 0.105210 0.994450i \(-0.466448\pi\)
0.105210 + 0.994450i \(0.466448\pi\)
\(32\) 0 0
\(33\) −9.85970 −1.71635
\(34\) 0 0
\(35\) −1.60568 0.665096i −0.271410 0.112422i
\(36\) 0 0
\(37\) −0.510925 1.23348i −0.0839955 0.202783i 0.876301 0.481763i \(-0.160004\pi\)
−0.960297 + 0.278980i \(0.910004\pi\)
\(38\) 0 0
\(39\) 8.05117 8.05117i 1.28922 1.28922i
\(40\) 0 0
\(41\) 1.66981 + 1.66981i 0.260780 + 0.260780i 0.825371 0.564591i \(-0.190966\pi\)
−0.564591 + 0.825371i \(0.690966\pi\)
\(42\) 0 0
\(43\) 2.54960 1.05608i 0.388811 0.161051i −0.179710 0.983720i \(-0.557516\pi\)
0.568521 + 0.822669i \(0.307516\pi\)
\(44\) 0 0
\(45\) −2.18073 + 5.26475i −0.325084 + 0.784823i
\(46\) 0 0
\(47\) 1.49824i 0.218540i 0.994012 + 0.109270i \(0.0348513\pi\)
−0.994012 + 0.109270i \(0.965149\pi\)
\(48\) 0 0
\(49\) 6.11529i 0.873614i
\(50\) 0 0
\(51\) 3.41421 8.24264i 0.478086 1.15420i
\(52\) 0 0
\(53\) −4.59495 + 1.90329i −0.631164 + 0.261437i −0.675248 0.737591i \(-0.735963\pi\)
0.0440833 + 0.999028i \(0.485963\pi\)
\(54\) 0 0
\(55\) −5.22274 5.22274i −0.704235 0.704235i
\(56\) 0 0
\(57\) −0.887839 + 0.887839i −0.117597 + 0.117597i
\(58\) 0 0
\(59\) −2.04784 4.94392i −0.266606 0.643644i 0.732713 0.680537i \(-0.238254\pi\)
−0.999319 + 0.0368939i \(0.988254\pi\)
\(60\) 0 0
\(61\) −13.7102 5.67897i −1.75542 0.727117i −0.997173 0.0751463i \(-0.976058\pi\)
−0.758244 0.651971i \(-0.773942\pi\)
\(62\) 0 0
\(63\) −2.90079 −0.365466
\(64\) 0 0
\(65\) 8.52951 1.05796
\(66\) 0 0
\(67\) 3.40617 + 1.41088i 0.416130 + 0.172367i 0.580918 0.813962i \(-0.302694\pi\)
−0.164788 + 0.986329i \(0.552694\pi\)
\(68\) 0 0
\(69\) −1.78197 4.30205i −0.214524 0.517906i
\(70\) 0 0
\(71\) −9.66157 + 9.66157i −1.14662 + 1.14662i −0.159403 + 0.987214i \(0.550957\pi\)
−0.987214 + 0.159403i \(0.949043\pi\)
\(72\) 0 0
\(73\) −7.55765 7.55765i −0.884556 0.884556i 0.109438 0.993994i \(-0.465095\pi\)
−0.993994 + 0.109438i \(0.965095\pi\)
\(74\) 0 0
\(75\) 3.61373 1.49685i 0.417277 0.172842i
\(76\) 0 0
\(77\) 1.43882 3.47363i 0.163969 0.395856i
\(78\) 0 0
\(79\) 17.2176i 1.93714i −0.248750 0.968568i \(-0.580020\pi\)
0.248750 0.968568i \(-0.419980\pi\)
\(80\) 0 0
\(81\) 8.74088i 0.971208i
\(82\) 0 0
\(83\) −4.82981 + 11.6602i −0.530140 + 1.27987i 0.401290 + 0.915951i \(0.368562\pi\)
−0.931430 + 0.363921i \(0.881438\pi\)
\(84\) 0 0
\(85\) 6.17471 2.55765i 0.669741 0.277416i
\(86\) 0 0
\(87\) 10.8331 + 10.8331i 1.16143 + 1.16143i
\(88\) 0 0
\(89\) −5.43882 + 5.43882i −0.576514 + 0.576514i −0.933941 0.357427i \(-0.883654\pi\)
0.357427 + 0.933941i \(0.383654\pi\)
\(90\) 0 0
\(91\) 1.66157 + 4.01138i 0.174179 + 0.420506i
\(92\) 0 0
\(93\) 2.66981 + 1.10587i 0.276846 + 0.114673i
\(94\) 0 0
\(95\) −0.940588 −0.0965023
\(96\) 0 0
\(97\) 6.15862 0.625313 0.312657 0.949866i \(-0.398781\pi\)
0.312657 + 0.949866i \(0.398781\pi\)
\(98\) 0 0
\(99\) −11.3894 4.71765i −1.14468 0.474141i
\(100\) 0 0
\(101\) 3.09671 + 7.47612i 0.308134 + 0.743902i 0.999766 + 0.0216512i \(0.00689233\pi\)
−0.691631 + 0.722251i \(0.743108\pi\)
\(102\) 0 0
\(103\) −4.72764 + 4.72764i −0.465828 + 0.465828i −0.900560 0.434732i \(-0.856843\pi\)
0.434732 + 0.900560i \(0.356843\pi\)
\(104\) 0 0
\(105\) −3.03127 3.03127i −0.295822 0.295822i
\(106\) 0 0
\(107\) −2.57774 + 1.06774i −0.249200 + 0.103222i −0.503787 0.863828i \(-0.668060\pi\)
0.254587 + 0.967050i \(0.418060\pi\)
\(108\) 0 0
\(109\) −3.46094 + 8.35544i −0.331498 + 0.800306i 0.666976 + 0.745079i \(0.267588\pi\)
−0.998474 + 0.0552270i \(0.982412\pi\)
\(110\) 0 0
\(111\) 3.29316i 0.312573i
\(112\) 0 0
\(113\) 11.7757i 1.10776i 0.832596 + 0.553881i \(0.186854\pi\)
−0.832596 + 0.553881i \(0.813146\pi\)
\(114\) 0 0
\(115\) 1.33490 3.22274i 0.124480 0.300522i
\(116\) 0 0
\(117\) 13.1526 5.44798i 1.21596 0.503666i
\(118\) 0 0
\(119\) 2.40569 + 2.40569i 0.220529 + 0.220529i
\(120\) 0 0
\(121\) 3.52035 3.52035i 0.320032 0.320032i
\(122\) 0 0
\(123\) 2.22903 + 5.38136i 0.200985 + 0.485221i
\(124\) 0 0
\(125\) 11.2426 + 4.65685i 1.00557 + 0.416522i
\(126\) 0 0
\(127\) 13.0590 1.15880 0.579400 0.815043i \(-0.303287\pi\)
0.579400 + 0.815043i \(0.303287\pi\)
\(128\) 0 0
\(129\) 6.80695 0.599319
\(130\) 0 0
\(131\) 6.52146 + 2.70128i 0.569783 + 0.236012i 0.648926 0.760851i \(-0.275218\pi\)
−0.0791431 + 0.996863i \(0.525218\pi\)
\(132\) 0 0
\(133\) −0.183228 0.442353i −0.0158879 0.0383568i
\(134\) 0 0
\(135\) −0.270780 + 0.270780i −0.0233050 + 0.0233050i
\(136\) 0 0
\(137\) 4.88118 + 4.88118i 0.417027 + 0.417027i 0.884178 0.467151i \(-0.154719\pi\)
−0.467151 + 0.884178i \(0.654719\pi\)
\(138\) 0 0
\(139\) 11.7837 4.88098i 0.999482 0.413999i 0.177875 0.984053i \(-0.443078\pi\)
0.821607 + 0.570054i \(0.193078\pi\)
\(140\) 0 0
\(141\) −1.41421 + 3.41421i −0.119098 + 0.287529i
\(142\) 0 0
\(143\) 18.4522i 1.54305i
\(144\) 0 0
\(145\) 11.4768i 0.953093i
\(146\) 0 0
\(147\) −5.77235 + 13.9357i −0.476095 + 1.14940i
\(148\) 0 0
\(149\) 5.73838 2.37691i 0.470106 0.194724i −0.135038 0.990840i \(-0.543116\pi\)
0.605144 + 0.796116i \(0.293116\pi\)
\(150\) 0 0
\(151\) 11.1504 + 11.1504i 0.907405 + 0.907405i 0.996062 0.0886573i \(-0.0282576\pi\)
−0.0886573 + 0.996062i \(0.528258\pi\)
\(152\) 0 0
\(153\) 7.88784 7.88784i 0.637694 0.637694i
\(154\) 0 0
\(155\) 0.828427 + 2.00000i 0.0665409 + 0.160644i
\(156\) 0 0
\(157\) −1.22496 0.507395i −0.0977624 0.0404945i 0.333266 0.942833i \(-0.391849\pi\)
−0.431029 + 0.902338i \(0.641849\pi\)
\(158\) 0 0
\(159\) −12.2676 −0.972886
\(160\) 0 0
\(161\) 1.77568 0.139943
\(162\) 0 0
\(163\) −21.3218 8.83176i −1.67005 0.691757i −0.671272 0.741211i \(-0.734252\pi\)
−0.998776 + 0.0494542i \(0.984252\pi\)
\(164\) 0 0
\(165\) −6.97186 16.8316i −0.542759 1.31034i
\(166\) 0 0
\(167\) 10.8863 10.8863i 0.842404 0.842404i −0.146767 0.989171i \(-0.546887\pi\)
0.989171 + 0.146767i \(0.0468867\pi\)
\(168\) 0 0
\(169\) −5.87515 5.87515i −0.451935 0.451935i
\(170\) 0 0
\(171\) −1.45040 + 0.600774i −0.110915 + 0.0459423i
\(172\) 0 0
\(173\) −0.735246 + 1.77504i −0.0558997 + 0.134954i −0.949362 0.314184i \(-0.898269\pi\)
0.893462 + 0.449138i \(0.148269\pi\)
\(174\) 0 0
\(175\) 1.49157i 0.112752i
\(176\) 0 0
\(177\) 13.1993i 0.992121i
\(178\) 0 0
\(179\) 1.87980 4.53823i 0.140503 0.339203i −0.837928 0.545782i \(-0.816233\pi\)
0.978430 + 0.206578i \(0.0662329\pi\)
\(180\) 0 0
\(181\) −1.87868 + 0.778175i −0.139641 + 0.0578413i −0.451410 0.892317i \(-0.649079\pi\)
0.311768 + 0.950158i \(0.399079\pi\)
\(182\) 0 0
\(183\) −25.8827 25.8827i −1.91331 1.91331i
\(184\) 0 0
\(185\) 1.74441 1.74441i 0.128251 0.128251i
\(186\) 0 0
\(187\) 5.53304 + 13.3579i 0.404616 + 0.976829i
\(188\) 0 0
\(189\) −0.180095 0.0745976i −0.0131000 0.00542618i
\(190\) 0 0
\(191\) −19.4022 −1.40389 −0.701946 0.712231i \(-0.747685\pi\)
−0.701946 + 0.712231i \(0.747685\pi\)
\(192\) 0 0
\(193\) −18.0461 −1.29898 −0.649492 0.760368i \(-0.725018\pi\)
−0.649492 + 0.760368i \(0.725018\pi\)
\(194\) 0 0
\(195\) 19.4372 + 8.05117i 1.39193 + 0.576556i
\(196\) 0 0
\(197\) 0.0865175 + 0.208872i 0.00616412 + 0.0148815i 0.926932 0.375230i \(-0.122436\pi\)
−0.920768 + 0.390112i \(0.872436\pi\)
\(198\) 0 0
\(199\) −11.8992 + 11.8992i −0.843513 + 0.843513i −0.989314 0.145801i \(-0.953424\pi\)
0.145801 + 0.989314i \(0.453424\pi\)
\(200\) 0 0
\(201\) 6.43030 + 6.43030i 0.453558 + 0.453558i
\(202\) 0 0
\(203\) −5.39745 + 2.23570i −0.378827 + 0.156915i
\(204\) 0 0
\(205\) −1.66981 + 4.03127i −0.116624 + 0.281556i
\(206\) 0 0
\(207\) 5.82214i 0.404667i
\(208\) 0 0
\(209\) 2.03480i 0.140750i
\(210\) 0 0
\(211\) 3.73060 9.00647i 0.256825 0.620031i −0.741900 0.670511i \(-0.766075\pi\)
0.998725 + 0.0504799i \(0.0160751\pi\)
\(212\) 0 0
\(213\) −31.1367 + 12.8973i −2.13345 + 0.883706i
\(214\) 0 0
\(215\) 3.60568 + 3.60568i 0.245906 + 0.245906i
\(216\) 0 0
\(217\) −0.779208 + 0.779208i −0.0528961 + 0.0528961i
\(218\) 0 0
\(219\) −10.0887 24.3564i −0.681733 1.64585i
\(220\) 0 0
\(221\) −15.4259 6.38960i −1.03766 0.429811i
\(222\) 0 0
\(223\) 22.6174 1.51458 0.757288 0.653081i \(-0.226524\pi\)
0.757288 + 0.653081i \(0.226524\pi\)
\(224\) 0 0
\(225\) 4.89060 0.326040
\(226\) 0 0
\(227\) 9.51294 + 3.94039i 0.631396 + 0.261533i 0.675346 0.737501i \(-0.263994\pi\)
−0.0439500 + 0.999034i \(0.513994\pi\)
\(228\) 0 0
\(229\) 6.53200 + 15.7697i 0.431647 + 1.04209i 0.978756 + 0.205027i \(0.0657282\pi\)
−0.547109 + 0.837061i \(0.684272\pi\)
\(230\) 0 0
\(231\) 6.55765 6.55765i 0.431462 0.431462i
\(232\) 0 0
\(233\) 10.4486 + 10.4486i 0.684512 + 0.684512i 0.961013 0.276502i \(-0.0891751\pi\)
−0.276502 + 0.961013i \(0.589175\pi\)
\(234\) 0 0
\(235\) −2.55765 + 1.05941i −0.166843 + 0.0691084i
\(236\) 0 0
\(237\) 16.2521 39.2360i 1.05569 2.54865i
\(238\) 0 0
\(239\) 11.6733i 0.755085i −0.925992 0.377543i \(-0.876769\pi\)
0.925992 0.377543i \(-0.123231\pi\)
\(240\) 0 0
\(241\) 13.8288i 0.890791i −0.895334 0.445396i \(-0.853063\pi\)
0.895334 0.445396i \(-0.146937\pi\)
\(242\) 0 0
\(243\) 8.48861 20.4933i 0.544545 1.31465i
\(244\) 0 0
\(245\) −10.4395 + 4.32417i −0.666953 + 0.276261i
\(246\) 0 0
\(247\) 1.66157 + 1.66157i 0.105723 + 0.105723i
\(248\) 0 0
\(249\) −22.0126 + 22.0126i −1.39499 + 1.39499i
\(250\) 0 0
\(251\) −5.38745 13.0065i −0.340053 0.820961i −0.997710 0.0676429i \(-0.978452\pi\)
0.657656 0.753318i \(-0.271548\pi\)
\(252\) 0 0
\(253\) 6.97186 + 2.88784i 0.438317 + 0.181557i
\(254\) 0 0
\(255\) 16.4853 1.03235
\(256\) 0 0
\(257\) −18.9043 −1.17922 −0.589609 0.807689i \(-0.700718\pi\)
−0.589609 + 0.807689i \(0.700718\pi\)
\(258\) 0 0
\(259\) 1.16020 + 0.480569i 0.0720911 + 0.0298611i
\(260\) 0 0
\(261\) 7.33046 + 17.6973i 0.453744 + 1.09543i
\(262\) 0 0
\(263\) 13.9086 13.9086i 0.857643 0.857643i −0.133417 0.991060i \(-0.542595\pi\)
0.991060 + 0.133417i \(0.0425948\pi\)
\(264\) 0 0
\(265\) −6.49824 6.49824i −0.399183 0.399183i
\(266\) 0 0
\(267\) −17.5279 + 7.26031i −1.07269 + 0.444324i
\(268\) 0 0
\(269\) −5.05209 + 12.1968i −0.308031 + 0.743653i 0.691737 + 0.722149i \(0.256846\pi\)
−0.999769 + 0.0215042i \(0.993154\pi\)
\(270\) 0 0
\(271\) 4.41512i 0.268199i 0.990968 + 0.134100i \(0.0428142\pi\)
−0.990968 + 0.134100i \(0.957186\pi\)
\(272\) 0 0
\(273\) 10.7096i 0.648175i
\(274\) 0 0
\(275\) −2.42579 + 5.85637i −0.146280 + 0.353152i
\(276\) 0 0
\(277\) 23.0454 9.54573i 1.38467 0.573547i 0.438941 0.898516i \(-0.355354\pi\)
0.945725 + 0.324969i \(0.105354\pi\)
\(278\) 0 0
\(279\) 2.55489 + 2.55489i 0.152957 + 0.152957i
\(280\) 0 0
\(281\) −5.83509 + 5.83509i −0.348092 + 0.348092i −0.859399 0.511306i \(-0.829162\pi\)
0.511306 + 0.859399i \(0.329162\pi\)
\(282\) 0 0
\(283\) −1.31992 3.18656i −0.0784609 0.189421i 0.879782 0.475378i \(-0.157689\pi\)
−0.958243 + 0.285957i \(0.907689\pi\)
\(284\) 0 0
\(285\) −2.14343 0.887839i −0.126966 0.0525911i
\(286\) 0 0
\(287\) −2.22117 −0.131111
\(288\) 0 0
\(289\) 3.91688 0.230405
\(290\) 0 0
\(291\) 14.0344 + 5.81324i 0.822712 + 0.340778i
\(292\) 0 0
\(293\) −2.89663 6.99307i −0.169223 0.408540i 0.816403 0.577482i \(-0.195965\pi\)
−0.985626 + 0.168943i \(0.945965\pi\)
\(294\) 0 0
\(295\) 6.99176 6.99176i 0.407076 0.407076i
\(296\) 0 0
\(297\) −0.585786 0.585786i −0.0339908 0.0339908i
\(298\) 0 0
\(299\) −8.05117 + 3.33490i −0.465611 + 0.192862i
\(300\) 0 0
\(301\) −0.993336 + 2.39813i −0.0572550 + 0.138226i
\(302\) 0 0
\(303\) 19.9598i 1.14666i
\(304\) 0 0
\(305\) 27.4205i 1.57009i
\(306\) 0 0
\(307\) 3.14481 7.59225i 0.179484 0.433313i −0.808375 0.588668i \(-0.799652\pi\)
0.987859 + 0.155356i \(0.0496524\pi\)
\(308\) 0 0
\(309\) −15.2360 + 6.31095i −0.866744 + 0.359017i
\(310\) 0 0
\(311\) −15.0543 15.0543i −0.853651 0.853651i 0.136930 0.990581i \(-0.456277\pi\)
−0.990581 + 0.136930i \(0.956277\pi\)
\(312\) 0 0
\(313\) 18.3365 18.3365i 1.03644 1.03644i 0.0371274 0.999311i \(-0.488179\pi\)
0.999311 0.0371274i \(-0.0118208\pi\)
\(314\) 0 0
\(315\) −2.05117 4.95196i −0.115570 0.279012i
\(316\) 0 0
\(317\) 9.52348 + 3.94476i 0.534892 + 0.221560i 0.633744 0.773543i \(-0.281517\pi\)
−0.0988523 + 0.995102i \(0.531517\pi\)
\(318\) 0 0
\(319\) −24.8280 −1.39010
\(320\) 0 0
\(321\) −6.88208 −0.384120
\(322\) 0 0
\(323\) 1.70108 + 0.704611i 0.0946507 + 0.0392056i
\(324\) 0 0
\(325\) −2.80132 6.76299i −0.155389 0.375143i
\(326\) 0 0
\(327\) −15.7737 + 15.7737i −0.872289 + 0.872289i
\(328\) 0 0
\(329\) −0.996470 0.996470i −0.0549372 0.0549372i
\(330\) 0 0
\(331\) −7.57421 + 3.13734i −0.416316 + 0.172444i −0.581002 0.813902i \(-0.697339\pi\)
0.164685 + 0.986346i \(0.447339\pi\)
\(332\) 0 0
\(333\) 1.57570 3.80408i 0.0863480 0.208462i
\(334\) 0 0
\(335\) 6.81234i 0.372198i
\(336\) 0 0
\(337\) 16.8910i 0.920110i 0.887890 + 0.460055i \(0.152170\pi\)
−0.887890 + 0.460055i \(0.847830\pi\)
\(338\) 0 0
\(339\) −11.1153 + 26.8347i −0.603700 + 1.45746i
\(340\) 0 0
\(341\) −4.32666 + 1.79216i −0.234302 + 0.0970510i
\(342\) 0 0
\(343\) −8.72293 8.72293i −0.470994 0.470994i
\(344\) 0 0
\(345\) 6.08402 6.08402i 0.327553 0.327553i
\(346\) 0 0
\(347\) 11.6582 + 28.1455i 0.625847 + 1.51093i 0.844739 + 0.535179i \(0.179756\pi\)
−0.218892 + 0.975749i \(0.570244\pi\)
\(348\) 0 0
\(349\) −9.99044 4.13818i −0.534776 0.221512i 0.0989174 0.995096i \(-0.468462\pi\)
−0.633694 + 0.773584i \(0.718462\pi\)
\(350\) 0 0
\(351\) 0.956675 0.0510636
\(352\) 0 0
\(353\) 0.673711 0.0358580 0.0179290 0.999839i \(-0.494293\pi\)
0.0179290 + 0.999839i \(0.494293\pi\)
\(354\) 0 0
\(355\) −23.3251 9.66157i −1.23797 0.512783i
\(356\) 0 0
\(357\) 3.21137 + 7.75293i 0.169964 + 0.410328i
\(358\) 0 0
\(359\) 3.92568 3.92568i 0.207190 0.207190i −0.595882 0.803072i \(-0.703198\pi\)
0.803072 + 0.595882i \(0.203198\pi\)
\(360\) 0 0
\(361\) 13.2518 + 13.2518i 0.697463 + 0.697463i
\(362\) 0 0
\(363\) 11.3452 4.69933i 0.595467 0.246651i
\(364\) 0 0
\(365\) 7.55765 18.2458i 0.395585 0.955027i
\(366\) 0 0
\(367\) 16.4759i 0.860033i 0.902821 + 0.430016i \(0.141492\pi\)
−0.902821 + 0.430016i \(0.858508\pi\)
\(368\) 0 0
\(369\) 7.28281i 0.379128i
\(370\) 0 0
\(371\) 1.79021 4.32195i 0.0929431 0.224384i
\(372\) 0 0
\(373\) 12.6790 5.25180i 0.656492 0.271928i −0.0294695 0.999566i \(-0.509382\pi\)
0.685962 + 0.727638i \(0.259382\pi\)
\(374\) 0 0
\(375\) 21.2243 + 21.2243i 1.09602 + 1.09602i
\(376\) 0 0
\(377\) 20.2739 20.2739i 1.04416 1.04416i
\(378\) 0 0
\(379\) 5.06746 + 12.2339i 0.260298 + 0.628414i 0.998957 0.0456649i \(-0.0145406\pi\)
−0.738659 + 0.674079i \(0.764541\pi\)
\(380\) 0 0
\(381\) 29.7592 + 12.3267i 1.52461 + 0.631514i
\(382\) 0 0
\(383\) 14.5667 0.744322 0.372161 0.928168i \(-0.378617\pi\)
0.372161 + 0.928168i \(0.378617\pi\)
\(384\) 0 0
\(385\) 6.94725 0.354065
\(386\) 0 0
\(387\) 7.86303 + 3.25697i 0.399700 + 0.165561i
\(388\) 0 0
\(389\) −14.2795 34.4739i −0.724002 1.74789i −0.661617 0.749842i \(-0.730129\pi\)
−0.0623850 0.998052i \(-0.519871\pi\)
\(390\) 0 0
\(391\) −4.82843 + 4.82843i −0.244184 + 0.244184i
\(392\) 0 0
\(393\) 12.3115 + 12.3115i 0.621032 + 0.621032i
\(394\) 0 0
\(395\) 29.3923 12.1747i 1.47889 0.612576i
\(396\) 0 0
\(397\) −8.88405 + 21.4480i −0.445877 + 1.07644i 0.527975 + 0.849260i \(0.322952\pi\)
−0.973852 + 0.227183i \(0.927048\pi\)
\(398\) 0 0
\(399\) 1.18100i 0.0591238i
\(400\) 0 0
\(401\) 2.51509i 0.125598i 0.998026 + 0.0627989i \(0.0200027\pi\)
−0.998026 + 0.0627989i \(0.979997\pi\)
\(402\) 0 0
\(403\) 2.06961 4.99647i 0.103094 0.248892i
\(404\) 0 0
\(405\) 14.9216 6.18073i 0.741461 0.307123i
\(406\) 0 0
\(407\) 3.77373 + 3.77373i 0.187057 + 0.187057i
\(408\) 0 0
\(409\) −5.32666 + 5.32666i −0.263386 + 0.263386i −0.826428 0.563042i \(-0.809631\pi\)
0.563042 + 0.826428i \(0.309631\pi\)
\(410\) 0 0
\(411\) 6.51590 + 15.7308i 0.321406 + 0.775942i
\(412\) 0 0
\(413\) 4.65019 + 1.92617i 0.228821 + 0.0947807i
\(414\) 0 0
\(415\) −23.3204 −1.14475
\(416\) 0 0
\(417\) 31.4603 1.54062
\(418\) 0 0
\(419\) −10.5509 4.37032i −0.515444 0.213504i 0.109770 0.993957i \(-0.464988\pi\)
−0.625214 + 0.780453i \(0.714988\pi\)
\(420\) 0 0
\(421\) −1.72505 4.16464i −0.0840739 0.202972i 0.876252 0.481854i \(-0.160036\pi\)
−0.960326 + 0.278881i \(0.910036\pi\)
\(422\) 0 0
\(423\) −3.26725 + 3.26725i −0.158859 + 0.158859i
\(424\) 0 0
\(425\) −4.05588 4.05588i −0.196739 0.196739i
\(426\) 0 0
\(427\) 12.8957 5.34157i 0.624066 0.258497i
\(428\) 0 0
\(429\) −17.4173 + 42.0492i −0.840917 + 2.03015i
\(430\) 0 0
\(431\) 16.9800i 0.817897i −0.912557 0.408949i \(-0.865896\pi\)
0.912557 0.408949i \(-0.134104\pi\)
\(432\) 0 0
\(433\) 16.9567i 0.814886i 0.913231 + 0.407443i \(0.133579\pi\)
−0.913231 + 0.407443i \(0.866421\pi\)
\(434\) 0 0
\(435\) −10.8331 + 26.1535i −0.519409 + 1.25396i
\(436\) 0 0
\(437\) 0.887839 0.367755i 0.0424711 0.0175921i
\(438\) 0 0
\(439\) 10.5596 + 10.5596i 0.503982 + 0.503982i 0.912673 0.408691i \(-0.134015\pi\)
−0.408691 + 0.912673i \(0.634015\pi\)
\(440\) 0 0
\(441\) −13.3358 + 13.3358i −0.635039 + 0.635039i
\(442\) 0 0
\(443\) −6.31087 15.2358i −0.299838 0.723874i −0.999952 0.00984190i \(-0.996867\pi\)
0.700113 0.714032i \(-0.253133\pi\)
\(444\) 0 0
\(445\) −13.1305 5.43882i −0.622444 0.257825i
\(446\) 0 0
\(447\) 15.3204 0.724629
\(448\) 0 0
\(449\) 8.07197 0.380940 0.190470 0.981693i \(-0.438999\pi\)
0.190470 + 0.981693i \(0.438999\pi\)
\(450\) 0 0
\(451\) −8.72098 3.61235i −0.410655 0.170099i
\(452\) 0 0
\(453\) 14.8847 + 35.9348i 0.699343 + 1.68836i
\(454\) 0 0
\(455\) −5.67294 + 5.67294i −0.265952 + 0.265952i
\(456\) 0 0
\(457\) −7.68314 7.68314i −0.359402 0.359402i 0.504191 0.863592i \(-0.331791\pi\)
−0.863592 + 0.504191i \(0.831791\pi\)
\(458\) 0 0
\(459\) 0.692559 0.286867i 0.0323259 0.0133898i
\(460\) 0 0
\(461\) 5.90199 14.2487i 0.274883 0.663627i −0.724796 0.688964i \(-0.758066\pi\)
0.999679 + 0.0253371i \(0.00806593\pi\)
\(462\) 0 0
\(463\) 27.3231i 1.26981i −0.772589 0.634907i \(-0.781038\pi\)
0.772589 0.634907i \(-0.218962\pi\)
\(464\) 0 0
\(465\) 5.33962i 0.247619i
\(466\) 0 0
\(467\) 9.40577 22.7075i 0.435247 1.05078i −0.542323 0.840170i \(-0.682455\pi\)
0.977570 0.210610i \(-0.0675449\pi\)
\(468\) 0 0
\(469\) −3.20380 + 1.32706i −0.147938 + 0.0612779i
\(470\) 0 0
\(471\) −2.31253 2.31253i −0.106556 0.106556i
\(472\) 0 0
\(473\) −7.80029 + 7.80029i −0.358658 + 0.358658i
\(474\) 0 0
\(475\) 0.308915 + 0.745786i 0.0141740 + 0.0342190i
\(476\) 0 0
\(477\) −14.1709 5.86978i −0.648842 0.268759i
\(478\) 0 0
\(479\) 3.91155 0.178723 0.0893616 0.995999i \(-0.471517\pi\)
0.0893616 + 0.995999i \(0.471517\pi\)
\(480\) 0 0
\(481\) −6.16305 −0.281011
\(482\) 0 0
\(483\) 4.04646 + 1.67610i 0.184120 + 0.0762651i
\(484\) 0 0
\(485\) 4.35480 + 10.5134i 0.197741 + 0.477390i
\(486\) 0 0
\(487\) −8.14685 + 8.14685i −0.369169 + 0.369169i −0.867174 0.498005i \(-0.834066\pi\)
0.498005 + 0.867174i \(0.334066\pi\)
\(488\) 0 0
\(489\) −40.2520 40.2520i −1.82026 1.82026i
\(490\) 0 0
\(491\) −11.2886 + 4.67590i −0.509448 + 0.211020i −0.622575 0.782560i \(-0.713913\pi\)
0.113127 + 0.993581i \(0.463913\pi\)
\(492\) 0 0
\(493\) 8.59744 20.7561i 0.387209 0.934806i
\(494\) 0 0
\(495\) 22.7788i 1.02383i
\(496\) 0 0
\(497\) 12.8517i 0.576479i
\(498\) 0 0
\(499\) −12.4071 + 29.9533i −0.555417 + 1.34089i 0.357944 + 0.933743i \(0.383478\pi\)
−0.913361 + 0.407152i \(0.866522\pi\)
\(500\) 0 0
\(501\) 35.0836 14.5321i 1.56742 0.649247i
\(502\) 0 0
\(503\) 8.77059 + 8.77059i 0.391061 + 0.391061i 0.875066 0.484004i \(-0.160818\pi\)
−0.484004 + 0.875066i \(0.660818\pi\)
\(504\) 0 0
\(505\) −10.5728 + 10.5728i −0.470485 + 0.470485i
\(506\) 0 0
\(507\) −7.84276 18.9341i −0.348309 0.840893i
\(508\) 0 0
\(509\) −20.0994 8.32546i −0.890892 0.369020i −0.110181 0.993912i \(-0.535143\pi\)
−0.780711 + 0.624892i \(0.785143\pi\)
\(510\) 0 0
\(511\) 10.0531 0.444724
\(512\) 0 0
\(513\) −0.105497 −0.00465780
\(514\) 0 0
\(515\) −11.4135 4.72764i −0.502941 0.208325i
\(516\) 0 0
\(517\) −2.29186 5.53304i −0.100796 0.243343i
\(518\) 0 0
\(519\) −3.35099 + 3.35099i −0.147092 + 0.147092i
\(520\) 0 0
\(521\) −29.8910 29.8910i −1.30955 1.30955i −0.921741 0.387807i \(-0.873233\pi\)
−0.387807 0.921741i \(-0.626767\pi\)
\(522\) 0 0
\(523\) −32.7654 + 13.5719i −1.43273 + 0.593456i −0.958024 0.286688i \(-0.907446\pi\)
−0.474706 + 0.880144i \(0.657446\pi\)
\(524\) 0 0
\(525\) −1.40792 + 3.39903i −0.0614468 + 0.148346i
\(526\) 0 0
\(527\) 4.23765i 0.184595i
\(528\) 0 0
\(529\) 19.4361i 0.845046i
\(530\) 0 0
\(531\) 6.31558 15.2472i 0.274073 0.661670i
\(532\) 0 0
\(533\) 10.0711 4.17157i 0.436226 0.180691i
\(534\) 0 0
\(535\) −3.64548 3.64548i −0.157608 0.157608i
\(536\) 0 0
\(537\) 8.56744 8.56744i 0.369713 0.369713i
\(538\) 0 0
\(539\) −9.35460 22.5840i −0.402931 0.972762i
\(540\) 0 0
\(541\) 11.2925 + 4.67751i 0.485502 + 0.201102i 0.611988 0.790867i \(-0.290370\pi\)
−0.126486 + 0.991968i \(0.540370\pi\)
\(542\) 0 0
\(543\) −5.01571 −0.215245
\(544\) 0 0
\(545\) −16.7109 −0.715815
\(546\) 0 0
\(547\) 19.1256 + 7.92207i 0.817750 + 0.338723i 0.752042 0.659116i \(-0.229069\pi\)
0.0657087 + 0.997839i \(0.479069\pi\)
\(548\) 0 0
\(549\) −17.5141 42.2827i −0.747482 1.80458i
\(550\) 0 0
\(551\) −2.23570 + 2.23570i −0.0952439 + 0.0952439i
\(552\) 0 0
\(553\) 11.4514 + 11.4514i 0.486962 + 0.486962i
\(554\) 0 0
\(555\) 5.62177 2.32861i 0.238631 0.0988442i
\(556\) 0 0
\(557\) −12.3617 + 29.8439i −0.523783 + 1.26452i 0.411753 + 0.911295i \(0.364916\pi\)
−0.935537 + 0.353229i \(0.885084\pi\)
\(558\) 0 0
\(559\) 12.7390i 0.538803i
\(560\) 0 0
\(561\) 35.6631i 1.50570i
\(562\) 0 0
\(563\) 10.5540 25.4797i 0.444800 1.07384i −0.529444 0.848345i \(-0.677600\pi\)
0.974244 0.225497i \(-0.0724004\pi\)
\(564\) 0 0
\(565\) −20.1023 + 8.32666i −0.845712 + 0.350305i
\(566\) 0 0
\(567\) 5.81352 + 5.81352i 0.244145 + 0.244145i
\(568\) 0 0
\(569\) −23.7855 + 23.7855i −0.997139 + 0.997139i −0.999996 0.00285688i \(-0.999091\pi\)
0.00285688 + 0.999996i \(0.499091\pi\)
\(570\) 0 0
\(571\) 0.904405 + 2.18343i 0.0378482 + 0.0913736i 0.941673 0.336528i \(-0.109253\pi\)
−0.903825 + 0.427902i \(0.859253\pi\)
\(572\) 0 0
\(573\) −44.2141 18.3141i −1.84707 0.765082i
\(574\) 0 0
\(575\) −2.99371 −0.124846
\(576\) 0 0
\(577\) 24.8839 1.03593 0.517965 0.855402i \(-0.326690\pi\)
0.517965 + 0.855402i \(0.326690\pi\)
\(578\) 0 0
\(579\) −41.1238 17.0340i −1.70905 0.707910i
\(580\) 0 0
\(581\) −4.54286 10.9674i −0.188469 0.455006i
\(582\) 0 0
\(583\) 14.0578 14.0578i 0.582216 0.582216i
\(584\) 0 0
\(585\) 18.6006 + 18.6006i 0.769039 + 0.769039i
\(586\) 0 0
\(587\) 40.1685 16.6383i 1.65793 0.686738i 0.660015 0.751253i \(-0.270550\pi\)
0.997917 + 0.0645151i \(0.0205501\pi\)
\(588\) 0 0
\(589\) −0.228225 + 0.550984i −0.00940384 + 0.0227029i
\(590\) 0 0
\(591\) 0.557647i 0.0229385i
\(592\) 0 0
\(593\) 9.10197i 0.373773i −0.982382 0.186886i \(-0.940160\pi\)
0.982382 0.186886i \(-0.0598397\pi\)
\(594\) 0 0
\(595\) −2.40569 + 5.80785i −0.0986238 + 0.238099i
\(596\) 0 0
\(597\) −38.3481 + 15.8843i −1.56948 + 0.650102i
\(598\) 0 0
\(599\) 3.04488 + 3.04488i 0.124410 + 0.124410i 0.766571 0.642160i \(-0.221962\pi\)
−0.642160 + 0.766571i \(0.721962\pi\)
\(600\) 0 0
\(601\) 9.53880 9.53880i 0.389096 0.389096i −0.485269 0.874365i \(-0.661278\pi\)
0.874365 + 0.485269i \(0.161278\pi\)
\(602\) 0 0
\(603\) 4.35119 + 10.5047i 0.177194 + 0.427784i
\(604\) 0 0
\(605\) 8.49887 + 3.52035i 0.345528 + 0.143123i
\(606\) 0 0
\(607\) −3.66391 −0.148714 −0.0743568 0.997232i \(-0.523690\pi\)
−0.0743568 + 0.997232i \(0.523690\pi\)
\(608\) 0 0
\(609\) −14.4102 −0.583929
\(610\) 0 0
\(611\) 6.38960 + 2.64666i 0.258496 + 0.107072i
\(612\) 0 0
\(613\) 11.6012 + 28.0079i 0.468570 + 1.13123i 0.964788 + 0.263029i \(0.0847215\pi\)
−0.496218 + 0.868198i \(0.665278\pi\)
\(614\) 0 0
\(615\) −7.61040 + 7.61040i −0.306881 + 0.306881i
\(616\) 0 0
\(617\) 5.86100 + 5.86100i 0.235955 + 0.235955i 0.815173 0.579218i \(-0.196642\pi\)
−0.579218 + 0.815173i \(0.696642\pi\)
\(618\) 0 0
\(619\) 36.9173 15.2917i 1.48383 0.614624i 0.513868 0.857869i \(-0.328212\pi\)
0.969965 + 0.243245i \(0.0782120\pi\)
\(620\) 0 0
\(621\) 0.149724 0.361465i 0.00600821 0.0145051i
\(622\) 0 0
\(623\) 7.23468i 0.289851i
\(624\) 0 0
\(625\) 14.5563i 0.582254i
\(626\) 0 0
\(627\) 1.92069 4.63696i 0.0767050 0.185182i
\(628\) 0 0
\(629\) −4.46157 + 1.84804i −0.177895 + 0.0736864i
\(630\) 0 0
\(631\) −21.0543 21.0543i −0.838159 0.838159i 0.150458 0.988616i \(-0.451925\pi\)
−0.988616 + 0.150458i \(0.951925\pi\)
\(632\) 0 0
\(633\) 17.0028 17.0028i 0.675799 0.675799i
\(634\) 0 0
\(635\) 9.23412 + 22.2931i 0.366445 + 0.884676i
\(636\) 0 0
\(637\) 26.0802 + 10.8028i 1.03334 + 0.428022i
\(638\) 0 0
\(639\) −42.1386 −1.66698
\(640\) 0 0
\(641\) −6.57429 −0.259669 −0.129835 0.991536i \(-0.541445\pi\)
−0.129835 + 0.991536i \(0.541445\pi\)
\(642\) 0 0
\(643\) 24.1050 + 9.98462i 0.950608 + 0.393755i 0.803459 0.595360i \(-0.202990\pi\)
0.147149 + 0.989114i \(0.452990\pi\)
\(644\) 0 0
\(645\) 4.81324 + 11.6202i 0.189521 + 0.457545i
\(646\) 0 0
\(647\) 19.1598 19.1598i 0.753250 0.753250i −0.221835 0.975084i \(-0.571205\pi\)
0.975084 + 0.221835i \(0.0712046\pi\)
\(648\) 0 0
\(649\) 15.1255 + 15.1255i 0.593727 + 0.593727i
\(650\) 0 0
\(651\) −2.51119 + 1.04017i −0.0984212 + 0.0407674i
\(652\) 0 0
\(653\) 5.73339 13.8416i 0.224365 0.541665i −0.771109 0.636703i \(-0.780298\pi\)
0.995474 + 0.0950389i \(0.0302975\pi\)
\(654\) 0 0
\(655\) 13.0429i 0.509629i
\(656\) 0 0
\(657\) 32.9624i 1.28599i
\(658\) 0 0
\(659\) 0.202554 0.489009i 0.00789039 0.0190491i −0.919885 0.392188i \(-0.871718\pi\)
0.927776 + 0.373139i \(0.121718\pi\)
\(660\) 0 0
\(661\) −6.45241 + 2.67268i −0.250970 + 0.103955i −0.504622 0.863340i \(-0.668368\pi\)
0.253652 + 0.967295i \(0.418368\pi\)
\(662\) 0 0
\(663\) −29.1216 29.1216i −1.13099 1.13099i
\(664\) 0 0
\(665\) 0.625581 0.625581i 0.0242590 0.0242590i
\(666\) 0 0
\(667\) −4.48723 10.8331i −0.173746 0.419461i
\(668\) 0 0
\(669\) 51.5411 + 21.3490i 1.99270 + 0.825402i
\(670\) 0 0
\(671\) 59.3196 2.29001
\(672\) 0 0
\(673\) −24.3285 −0.937793 −0.468897 0.883253i \(-0.655348\pi\)
−0.468897 + 0.883253i \(0.655348\pi\)
\(674\) 0 0
\(675\) 0.303631 + 0.125768i 0.0116868 + 0.00484081i
\(676\) 0 0
\(677\) −1.60737 3.88054i −0.0617763 0.149141i 0.889977 0.456005i \(-0.150720\pi\)
−0.951753 + 0.306864i \(0.900720\pi\)
\(678\) 0 0
\(679\) −4.09607 + 4.09607i −0.157193 + 0.157193i
\(680\) 0 0
\(681\) 17.9589 + 17.9589i 0.688187 + 0.688187i
\(682\) 0 0
\(683\) −24.8133 + 10.2780i −0.949455 + 0.393277i −0.803026 0.595944i \(-0.796778\pi\)
−0.146429 + 0.989221i \(0.546778\pi\)
\(684\) 0 0
\(685\) −4.88118 + 11.7842i −0.186500 + 0.450251i
\(686\) 0 0
\(687\) 42.1019i 1.60629i
\(688\) 0 0
\(689\) 22.9585i 0.874650i
\(690\) 0 0
\(691\) −8.56885 + 20.6870i −0.325974 + 0.786972i 0.672909 + 0.739725i \(0.265045\pi\)
−0.998883 + 0.0472463i \(0.984955\pi\)
\(692\) 0 0
\(693\) 10.7127 4.43736i 0.406943 0.168561i
\(694\) 0 0
\(695\) 16.6647 + 16.6647i 0.632128 + 0.632128i
\(696\) 0 0
\(697\) 6.03979 6.03979i 0.228774 0.228774i
\(698\) 0 0
\(699\) 13.9479 + 33.6732i 0.527558 + 1.27364i
\(700\) 0 0
\(701\) −28.1557 11.6625i −1.06343 0.440486i −0.218760 0.975779i \(-0.570201\pi\)
−0.844667 + 0.535293i \(0.820201\pi\)
\(702\) 0 0
\(703\) 0.679628 0.0256326
\(704\) 0 0
\(705\) −6.82843 −0.257173
\(706\) 0 0
\(707\) −7.03195 2.91273i −0.264464 0.109544i
\(708\) 0 0
\(709\) −12.4408 30.0346i −0.467223 1.12797i −0.965370 0.260883i \(-0.915986\pi\)
0.498148 0.867092i \(-0.334014\pi\)
\(710\) 0 0
\(711\) 37.5471 37.5471i 1.40812 1.40812i
\(712\) 0 0
\(713\) −1.56394 1.56394i −0.0585699 0.0585699i
\(714\) 0 0
\(715\) −31.4998 + 13.0476i −1.17803 + 0.487954i
\(716\) 0 0
\(717\) 11.0187 26.6015i 0.411501 0.993450i
\(718\) 0 0
\(719\) 33.6333i 1.25431i 0.778894 + 0.627155i \(0.215781\pi\)
−0.778894 + 0.627155i \(0.784219\pi\)
\(720\) 0 0
\(721\) 6.28867i 0.234202i
\(722\) 0 0
\(723\) 13.0533 31.5134i 0.485457 1.17200i
\(724\) 0 0
\(725\) 9.09984 3.76928i 0.337960 0.139988i
\(726\) 0 0
\(727\) −7.43334 7.43334i −0.275687 0.275687i 0.555697 0.831385i \(-0.312451\pi\)
−0.831385 + 0.555697i \(0.812451\pi\)
\(728\) 0 0
\(729\) 20.1459 20.1459i 0.746145 0.746145i
\(730\) 0 0
\(731\) −3.81991 9.22207i −0.141284 0.341090i
\(732\) 0 0
\(733\) 0.328598 + 0.136110i 0.0121371 + 0.00502733i 0.388744 0.921346i \(-0.372909\pi\)
−0.376607 + 0.926373i \(0.622909\pi\)
\(734\) 0 0
\(735\) −27.8714 −1.02805
\(736\) 0 0
\(737\) −14.7373 −0.542857
\(738\) 0 0
\(739\) 43.8857 + 18.1780i 1.61436 + 0.668690i 0.993352 0.115114i \(-0.0367234\pi\)
0.621008 + 0.783804i \(0.286723\pi\)
\(740\) 0 0
\(741\) 2.21803 + 5.35480i 0.0814814 + 0.196714i
\(742\) 0 0
\(743\) −30.3220 + 30.3220i −1.11240 + 1.11240i −0.119580 + 0.992825i \(0.538155\pi\)
−0.992825 + 0.119580i \(0.961845\pi\)
\(744\) 0 0
\(745\) 8.11529 + 8.11529i 0.297321 + 0.297321i
\(746\) 0 0
\(747\) −35.9603 + 14.8952i −1.31572 + 0.544988i
\(748\) 0 0
\(749\) 1.00430 2.42459i 0.0366963 0.0885927i
\(750\) 0 0
\(751\) 51.3686i 1.87447i 0.348701 + 0.937234i \(0.386623\pi\)
−0.348701 + 0.937234i \(0.613377\pi\)
\(752\) 0 0
\(753\) 34.7248i 1.26544i
\(754\) 0 0
\(755\) −11.1504 + 26.9194i −0.405804 + 0.979697i
\(756\) 0 0
\(757\) −15.2644 + 6.32270i −0.554793 + 0.229803i −0.642423 0.766350i \(-0.722071\pi\)
0.0876302 + 0.996153i \(0.472071\pi\)
\(758\) 0 0
\(759\) 13.1618 + 13.1618i 0.477741 + 0.477741i
\(760\) 0 0
\(761\) 26.6859 26.6859i 0.967362 0.967362i −0.0321218 0.999484i \(-0.510226\pi\)
0.999484 + 0.0321218i \(0.0102264\pi\)
\(762\) 0 0
\(763\) −3.25531 7.85902i −0.117850 0.284516i
\(764\) 0 0
\(765\) 19.0429 + 7.88784i 0.688499 + 0.285185i
\(766\) 0 0
\(767\) −24.7021 −0.891943
\(768\) 0 0
\(769\) 44.0390 1.58809 0.794044 0.607861i \(-0.207972\pi\)
0.794044 + 0.607861i \(0.207972\pi\)
\(770\) 0 0
\(771\) −43.0796 17.8441i −1.55147 0.642641i
\(772\) 0 0
\(773\) 15.4001 + 37.1790i 0.553902 + 1.33724i 0.914526 + 0.404526i \(0.132564\pi\)
−0.360625 + 0.932711i \(0.617436\pi\)
\(774\) 0 0
\(775\) 1.31371 1.31371i 0.0471898 0.0471898i
\(776\) 0 0
\(777\) 2.19027 + 2.19027i 0.0785754 + 0.0785754i
\(778\) 0 0
\(779\) −1.11058 + 0.460018i −0.0397908 + 0.0164819i
\(780\) 0 0
\(781\) 20.9012 50.4599i 0.747903 1.80560i
\(782\) 0 0
\(783\) 1.28724i 0.0460022i
\(784\) 0 0
\(785\) 2.44992i 0.0874413i
\(786\) 0 0
\(787\) −0.948632 + 2.29020i −0.0338151 + 0.0816368i −0.939885 0.341491i \(-0.889068\pi\)
0.906070 + 0.423128i \(0.139068\pi\)
\(788\) 0 0
\(789\) 44.8240 18.5667i 1.59578 0.660992i
\(790\) 0 0
\(791\) −7.83196 7.83196i −0.278472 0.278472i
\(792\) 0 0
\(793\) −48.4388 + 48.4388i −1.72011 + 1.72011i
\(794\) 0 0
\(795\) −8.67452 20.9421i −0.307654 0.742741i
\(796\) 0 0
\(797\) 2.76562 + 1.14556i 0.0979632 + 0.0405777i 0.431127 0.902291i \(-0.358116\pi\)
−0.333164 + 0.942869i \(0.608116\pi\)
\(798\) 0 0
\(799\) 5.41921 0.191718
\(800\) 0 0
\(801\) −23.7212 −0.838149
\(802\) 0 0
\(803\) 39.4717 + 16.3497i 1.39292 + 0.576968i
\(804\) 0 0
\(805\) 1.25559 + 3.03127i 0.0442539 + 0.106838i
\(806\) 0 0
\(807\) −23.0256 + 23.0256i −0.810541 + 0.810541i
\(808\) 0 0
\(809\) −7.12825 7.12825i −0.250616 0.250616i 0.570607 0.821223i \(-0.306708\pi\)
−0.821223 + 0.570607i \(0.806708\pi\)
\(810\) 0 0
\(811\) −27.4750 + 11.3805i −0.964777 + 0.399624i −0.808765 0.588131i \(-0.799864\pi\)
−0.156012 + 0.987755i \(0.549864\pi\)
\(812\) 0 0
\(813\) −4.16751 + 10.0613i −0.146161 + 0.352864i
\(814\) 0 0
\(815\) 42.6435i 1.49374i
\(816\) 0 0
\(817\) 1.40479i 0.0491474i
\(818\) 0 0
\(819\) −5.12431 + 12.3712i −0.179058 + 0.432284i
\(820\) 0 0
\(821\) −34.1861 + 14.1603i −1.19310 + 0.494199i −0.888764 0.458364i \(-0.848435\pi\)
−0.304339 + 0.952564i \(0.598435\pi\)
\(822\) 0 0
\(823\) 27.3810 + 27.3810i 0.954440 + 0.954440i 0.999006 0.0445659i \(-0.0141905\pi\)
−0.0445659 + 0.999006i \(0.514190\pi\)
\(824\) 0 0
\(825\) −11.0559 + 11.0559i −0.384916 + 0.384916i
\(826\) 0 0
\(827\) −7.98030 19.2661i −0.277502 0.669950i 0.722263 0.691619i \(-0.243102\pi\)
−0.999765 + 0.0216689i \(0.993102\pi\)
\(828\) 0 0
\(829\) 3.59585 + 1.48945i 0.124889 + 0.0517307i 0.444253 0.895901i \(-0.353469\pi\)
−0.319364 + 0.947632i \(0.603469\pi\)
\(830\) 0 0
\(831\) 61.5269 2.13434
\(832\) 0 0
\(833\) 22.1194 0.766391
\(834\) 0 0
\(835\) 26.2818 + 10.8863i 0.909518 + 0.376735i
\(836\) 0 0
\(837\) 0.0929169 + 0.224321i 0.00321168 + 0.00775368i
\(838\) 0 0
\(839\) 13.8461 13.8461i 0.478020 0.478020i −0.426478 0.904498i \(-0.640246\pi\)
0.904498 + 0.426478i \(0.140246\pi\)
\(840\) 0 0
\(841\) 6.77318 + 6.77318i 0.233558 + 0.233558i
\(842\) 0 0
\(843\) −18.8050 + 7.78929i −0.647679 + 0.268277i
\(844\) 0 0
\(845\) 5.87515 14.1839i 0.202111 0.487940i
\(846\) 0 0
\(847\) 4.68274i 0.160901i
\(848\) 0 0
\(849\) 8.50750i 0.291977i
\(850\) 0 0
\(851\) −0.964543 + 2.32861i −0.0330641 + 0.0798239i
\(852\) 0 0
\(853\) −18.0597 + 7.48055i −0.618351 + 0.256129i −0.669794 0.742547i \(-0.733618\pi\)
0.0514436 + 0.998676i \(0.483618\pi\)
\(854\) 0 0
\(855\) −2.05117 2.05117i −0.0701485 0.0701485i
\(856\) 0 0
\(857\) −6.35294 + 6.35294i −0.217012 + 0.217012i −0.807238 0.590226i \(-0.799039\pi\)
0.590226 + 0.807238i \(0.299039\pi\)
\(858\) 0 0
\(859\) −9.72800 23.4855i −0.331915 0.801314i −0.998440 0.0558315i \(-0.982219\pi\)
0.666525 0.745483i \(-0.267781\pi\)
\(860\) 0 0
\(861\) −5.06164 2.09660i −0.172500 0.0714520i
\(862\) 0 0
\(863\) −0.0884535 −0.00301099 −0.00150550 0.999999i \(-0.500479\pi\)
−0.00150550 + 0.999999i \(0.500479\pi\)
\(864\) 0 0
\(865\) −3.55008 −0.120706
\(866\) 0 0
\(867\) 8.92588 + 3.69722i 0.303139 + 0.125564i
\(868\) 0 0
\(869\) 26.3379 + 63.5854i 0.893453 + 2.15699i
\(870\) 0 0
\(871\) 12.0341 12.0341i 0.407761 0.407761i
\(872\) 0 0
\(873\) 13.4303 + 13.4303i 0.454547 + 0.454547i
\(874\) 0 0
\(875\) −10.5747 + 4.38018i −0.357490 + 0.148077i
\(876\) 0 0
\(877\) 4.24514 10.2487i 0.143348 0.346073i −0.835857 0.548948i \(-0.815029\pi\)
0.979205 + 0.202875i \(0.0650285\pi\)
\(878\) 0 0
\(879\) 18.6702i 0.629729i
\(880\) 0 0
\(881\) 23.9859i 0.808105i 0.914736 + 0.404052i \(0.132399\pi\)
−0.914736 + 0.404052i \(0.867601\pi\)
\(882\) 0 0
\(883\) 7.74892 18.7075i 0.260772 0.629559i −0.738215 0.674566i \(-0.764331\pi\)
0.998987 + 0.0450067i \(0.0143309\pi\)
\(884\) 0 0
\(885\) 22.5326 9.33333i 0.757426 0.313736i
\(886\) 0 0
\(887\) −36.4494 36.4494i −1.22385 1.22385i −0.966252 0.257600i \(-0.917068\pi\)
−0.257600 0.966252i \(-0.582932\pi\)
\(888\) 0 0
\(889\) −8.68550 + 8.68550i −0.291302 + 0.291302i
\(890\) 0 0
\(891\) 13.3710 + 32.2804i 0.447944 + 1.08143i
\(892\) 0 0
\(893\) −0.704611 0.291859i −0.0235789 0.00976670i
\(894\) 0 0
\(895\) 9.07646 0.303392
\(896\) 0 0
\(897\) −21.4951 −0.717700
\(898\) 0 0
\(899\) 6.72293 + 2.78473i 0.224222 + 0.0928759i
\(900\) 0 0
\(901\) 6.88431 + 16.6202i 0.229350 + 0.553699i
\(902\) 0 0
\(903\) −4.52728 + 4.52728i −0.150658 + 0.150658i
\(904\) 0 0
\(905\) −2.65685 2.65685i −0.0883168 0.0883168i
\(906\) 0 0
\(907\) 38.2753 15.8541i 1.27091 0.526428i 0.357669 0.933848i \(-0.383572\pi\)
0.913241 + 0.407421i \(0.133572\pi\)
\(908\) 0 0
\(909\) −9.55032 + 23.0565i −0.316764 + 0.764737i
\(910\) 0 0
\(911\) 12.5214i 0.414851i −0.978251 0.207426i \(-0.933492\pi\)
0.978251 0.207426i \(-0.0665085\pi\)
\(912\) 0 0
\(913\) 50.4497i 1.66964i
\(914\) 0 0
\(915\) 25.8827 62.4864i 0.855657 2.06574i
\(916\) 0 0
\(917\) −6.13401 + 2.54079i −0.202563 + 0.0839043i
\(918\) 0 0
\(919\) 1.19513 + 1.19513i 0.0394238 + 0.0394238i 0.726544 0.687120i \(-0.241125\pi\)
−0.687120 + 0.726544i \(0.741125\pi\)
\(920\) 0 0
\(921\) 14.3330 14.3330i 0.472287 0.472287i
\(922\) 0 0
\(923\) 24.1369 + 58.2715i 0.794475 + 1.91803i
\(924\) 0 0
\(925\) −1.95604 0.810217i −0.0643141 0.0266398i
\(926\) 0 0
\(927\) −20.6194 −0.677231
\(928\) 0 0
\(929\) 45.1410 1.48103 0.740514 0.672041i \(-0.234582\pi\)
0.740514 + 0.672041i \(0.234582\pi\)
\(930\) 0 0
\(931\) −2.87599 1.19127i −0.0942566 0.0390424i
\(932\) 0 0
\(933\) −20.0961 48.5162i −0.657915 1.58835i
\(934\) 0 0
\(935\) −18.8910 + 18.8910i −0.617801 + 0.617801i
\(936\) 0 0
\(937\) 2.58002 + 2.58002i 0.0842857 + 0.0842857i 0.747993 0.663707i \(-0.231018\pi\)
−0.663707 + 0.747993i \(0.731018\pi\)
\(938\) 0 0
\(939\) 59.0937 24.4774i 1.92845 0.798790i
\(940\) 0 0
\(941\) −2.24720 + 5.42523i −0.0732568 + 0.176857i −0.956266 0.292498i \(-0.905514\pi\)
0.883009 + 0.469355i \(0.155514\pi\)
\(942\) 0 0
\(943\) 4.45807i 0.145175i
\(944\) 0 0
\(945\) 0.360189i 0.0117170i
\(946\) 0 0
\(947\) −17.5640 + 42.4032i −0.570753 + 1.37792i 0.330162 + 0.943924i \(0.392897\pi\)
−0.900915 + 0.433996i \(0.857103\pi\)
\(948\) 0 0
\(949\) −45.5822 + 18.8808i −1.47966 + 0.612896i
\(950\) 0 0
\(951\) 17.9788 + 17.9788i 0.583003 + 0.583003i
\(952\) 0 0
\(953\) 14.8079 14.8079i 0.479673 0.479673i −0.425354 0.905027i \(-0.639850\pi\)
0.905027 + 0.425354i \(0.139850\pi\)
\(954\) 0 0
\(955\) −13.7194 33.1216i −0.443949 1.07179i
\(956\) 0 0
\(957\) −56.5787 23.4357i −1.82893 0.757568i
\(958\) 0 0
\(959\) −6.49290 −0.209667
\(960\) 0 0
\(961\) −29.6274 −0.955723
\(962\) 0 0
\(963\) −7.94981 3.29292i −0.256179 0.106113i
\(964\) 0 0
\(965\) −12.7605 30.8066i −0.410775 0.991698i
\(966\) 0 0
\(967\) 24.8604 24.8604i 0.799455 0.799455i −0.183554 0.983010i \(-0.558760\pi\)
0.983010 + 0.183554i \(0.0587604\pi\)
\(968\) 0 0
\(969\) 3.21137 + 3.21137i 0.103164 + 0.103164i
\(970\) 0 0
\(971\) 23.3388 9.66725i 0.748978 0.310237i 0.0246533 0.999696i \(-0.492152\pi\)
0.724324 + 0.689459i \(0.242152\pi\)
\(972\) 0 0
\(973\) −4.59099 + 11.0836i −0.147180 + 0.355325i
\(974\) 0 0
\(975\) 18.0559i 0.578251i
\(976\) 0 0
\(977\) 54.7057i 1.75019i 0.483952 + 0.875094i \(0.339201\pi\)
−0.483952 + 0.875094i \(0.660799\pi\)
\(978\) 0 0
\(979\) 11.7660 28.4056i 0.376042 0.907846i
\(980\) 0 0
\(981\) −25.7684 + 10.6736i −0.822720 + 0.340782i
\(982\) 0 0
\(983\) −7.85315 7.85315i −0.250477 0.250477i 0.570689 0.821166i \(-0.306676\pi\)
−0.821166 + 0.570689i \(0.806676\pi\)
\(984\) 0 0
\(985\) −0.295389 + 0.295389i −0.00941188 + 0.00941188i
\(986\) 0 0
\(987\) −1.33019 3.21137i −0.0423405 0.102219i
\(988\) 0 0
\(989\) −4.81324 1.99371i −0.153052 0.0633963i
\(990\) 0 0
\(991\) −52.4878 −1.66733 −0.833665 0.552270i \(-0.813762\pi\)
−0.833665 + 0.552270i \(0.813762\pi\)
\(992\) 0 0
\(993\) −20.2217 −0.641716
\(994\) 0 0
\(995\) −28.7272 11.8992i −0.910715 0.377230i
\(996\) 0 0
\(997\) −12.8431 31.0060i −0.406745 0.981970i −0.985988 0.166815i \(-0.946652\pi\)
0.579243 0.815155i \(-0.303348\pi\)
\(998\) 0 0
\(999\) 0.195654 0.195654i 0.00619021 0.00619021i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 256.2.g.d.161.2 8
4.3 odd 2 256.2.g.c.161.1 8
8.3 odd 2 128.2.g.b.81.2 8
8.5 even 2 32.2.g.b.29.2 yes 8
16.3 odd 4 512.2.g.f.65.2 8
16.5 even 4 512.2.g.e.65.2 8
16.11 odd 4 512.2.g.g.65.1 8
16.13 even 4 512.2.g.h.65.1 8
24.5 odd 2 288.2.v.b.253.1 8
24.11 even 2 1152.2.v.b.721.1 8
32.3 odd 8 512.2.g.g.449.1 8
32.5 even 8 32.2.g.b.21.2 8
32.11 odd 8 256.2.g.c.97.1 8
32.13 even 8 512.2.g.h.449.1 8
32.19 odd 8 512.2.g.f.449.2 8
32.21 even 8 inner 256.2.g.d.97.2 8
32.27 odd 8 128.2.g.b.49.2 8
32.29 even 8 512.2.g.e.449.2 8
40.13 odd 4 800.2.ba.c.349.2 8
40.29 even 2 800.2.y.b.701.1 8
40.37 odd 4 800.2.ba.d.349.1 8
64.11 odd 16 4096.2.a.q.1.2 8
64.21 even 16 4096.2.a.k.1.2 8
64.43 odd 16 4096.2.a.q.1.7 8
64.53 even 16 4096.2.a.k.1.7 8
96.5 odd 8 288.2.v.b.181.1 8
96.59 even 8 1152.2.v.b.433.1 8
160.37 odd 8 800.2.ba.c.149.2 8
160.69 even 8 800.2.y.b.501.1 8
160.133 odd 8 800.2.ba.d.149.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
32.2.g.b.21.2 8 32.5 even 8
32.2.g.b.29.2 yes 8 8.5 even 2
128.2.g.b.49.2 8 32.27 odd 8
128.2.g.b.81.2 8 8.3 odd 2
256.2.g.c.97.1 8 32.11 odd 8
256.2.g.c.161.1 8 4.3 odd 2
256.2.g.d.97.2 8 32.21 even 8 inner
256.2.g.d.161.2 8 1.1 even 1 trivial
288.2.v.b.181.1 8 96.5 odd 8
288.2.v.b.253.1 8 24.5 odd 2
512.2.g.e.65.2 8 16.5 even 4
512.2.g.e.449.2 8 32.29 even 8
512.2.g.f.65.2 8 16.3 odd 4
512.2.g.f.449.2 8 32.19 odd 8
512.2.g.g.65.1 8 16.11 odd 4
512.2.g.g.449.1 8 32.3 odd 8
512.2.g.h.65.1 8 16.13 even 4
512.2.g.h.449.1 8 32.13 even 8
800.2.y.b.501.1 8 160.69 even 8
800.2.y.b.701.1 8 40.29 even 2
800.2.ba.c.149.2 8 160.37 odd 8
800.2.ba.c.349.2 8 40.13 odd 4
800.2.ba.d.149.1 8 160.133 odd 8
800.2.ba.d.349.1 8 40.37 odd 4
1152.2.v.b.433.1 8 96.59 even 8
1152.2.v.b.721.1 8 24.11 even 2
4096.2.a.k.1.2 8 64.21 even 16
4096.2.a.k.1.7 8 64.53 even 16
4096.2.a.q.1.2 8 64.11 odd 16
4096.2.a.q.1.7 8 64.43 odd 16