Properties

Label 1152.2.v.b.721.1
Level $1152$
Weight $2$
Character 1152.721
Analytic conductor $9.199$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1152,2,Mod(145,1152)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1152, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 7, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1152.145");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1152 = 2^{7} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1152.v (of order \(8\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.19876631285\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{8})\)
Coefficient field: 8.0.18939904.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 14x^{6} - 28x^{5} + 43x^{4} - 44x^{3} + 30x^{2} - 12x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 32)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 721.1
Root \(0.500000 + 0.0297061i\) of defining polynomial
Character \(\chi\) \(=\) 1152.721
Dual form 1152.2.v.b.433.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 + 1.70711i) q^{5} +(0.665096 - 0.665096i) q^{7} +(3.69304 - 1.52971i) q^{11} +(-1.76652 + 4.26475i) q^{13} +3.61706i q^{17} +(-0.194802 + 0.470294i) q^{19} +(-1.33490 - 1.33490i) q^{23} +(1.12132 - 1.12132i) q^{25} +(5.73838 + 2.37691i) q^{29} -1.17157 q^{31} +(1.60568 + 0.665096i) q^{35} +(0.510925 + 1.23348i) q^{37} +(-1.66981 - 1.66981i) q^{41} +(2.54960 - 1.05608i) q^{43} +1.49824i q^{47} +6.11529i q^{49} +(-4.59495 + 1.90329i) q^{53} +(5.22274 + 5.22274i) q^{55} +(2.04784 + 4.94392i) q^{59} +(13.7102 + 5.67897i) q^{61} -8.52951 q^{65} +(3.40617 + 1.41088i) q^{67} +(-9.66157 + 9.66157i) q^{71} +(-7.55765 - 7.55765i) q^{73} +(1.43882 - 3.47363i) q^{77} +17.2176i q^{79} +(4.82981 - 11.6602i) q^{83} +(-6.17471 + 2.55765i) q^{85} +(5.43882 - 5.43882i) q^{89} +(1.66157 + 4.01138i) q^{91} -0.940588 q^{95} +6.15862 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{7} + 4 q^{11} - 8 q^{13} - 4 q^{19} - 8 q^{23} - 8 q^{25} - 32 q^{31} + 16 q^{35} - 8 q^{37} - 8 q^{41} + 12 q^{43} - 8 q^{53} + 16 q^{55} - 20 q^{59} + 24 q^{61} + 36 q^{67} - 24 q^{71} - 32 q^{73}+ \cdots + 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1152\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(641\) \(901\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{3}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.707107 + 1.70711i 0.316228 + 0.763441i 0.999448 + 0.0332288i \(0.0105790\pi\)
−0.683220 + 0.730213i \(0.739421\pi\)
\(6\) 0 0
\(7\) 0.665096 0.665096i 0.251383 0.251383i −0.570155 0.821537i \(-0.693117\pi\)
0.821537 + 0.570155i \(0.193117\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.69304 1.52971i 1.11349 0.461224i 0.251353 0.967895i \(-0.419124\pi\)
0.862139 + 0.506672i \(0.169124\pi\)
\(12\) 0 0
\(13\) −1.76652 + 4.26475i −0.489944 + 1.18283i 0.464804 + 0.885414i \(0.346125\pi\)
−0.954748 + 0.297416i \(0.903875\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.61706i 0.877266i 0.898666 + 0.438633i \(0.144537\pi\)
−0.898666 + 0.438633i \(0.855463\pi\)
\(18\) 0 0
\(19\) −0.194802 + 0.470294i −0.0446907 + 0.107893i −0.944649 0.328084i \(-0.893597\pi\)
0.899958 + 0.435977i \(0.143597\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.33490 1.33490i −0.278347 0.278347i 0.554102 0.832449i \(-0.313062\pi\)
−0.832449 + 0.554102i \(0.813062\pi\)
\(24\) 0 0
\(25\) 1.12132 1.12132i 0.224264 0.224264i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 5.73838 + 2.37691i 1.06559 + 0.441382i 0.845433 0.534082i \(-0.179343\pi\)
0.220158 + 0.975464i \(0.429343\pi\)
\(30\) 0 0
\(31\) −1.17157 −0.210421 −0.105210 0.994450i \(-0.533552\pi\)
−0.105210 + 0.994450i \(0.533552\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.60568 + 0.665096i 0.271410 + 0.112422i
\(36\) 0 0
\(37\) 0.510925 + 1.23348i 0.0839955 + 0.202783i 0.960297 0.278980i \(-0.0899965\pi\)
−0.876301 + 0.481763i \(0.839996\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −1.66981 1.66981i −0.260780 0.260780i 0.564591 0.825371i \(-0.309034\pi\)
−0.825371 + 0.564591i \(0.809034\pi\)
\(42\) 0 0
\(43\) 2.54960 1.05608i 0.388811 0.161051i −0.179710 0.983720i \(-0.557516\pi\)
0.568521 + 0.822669i \(0.307516\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.49824i 0.218540i 0.994012 + 0.109270i \(0.0348513\pi\)
−0.994012 + 0.109270i \(0.965149\pi\)
\(48\) 0 0
\(49\) 6.11529i 0.873614i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −4.59495 + 1.90329i −0.631164 + 0.261437i −0.675248 0.737591i \(-0.735963\pi\)
0.0440833 + 0.999028i \(0.485963\pi\)
\(54\) 0 0
\(55\) 5.22274 + 5.22274i 0.704235 + 0.704235i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 2.04784 + 4.94392i 0.266606 + 0.643644i 0.999319 0.0368939i \(-0.0117464\pi\)
−0.732713 + 0.680537i \(0.761746\pi\)
\(60\) 0 0
\(61\) 13.7102 + 5.67897i 1.75542 + 0.727117i 0.997173 + 0.0751463i \(0.0239424\pi\)
0.758244 + 0.651971i \(0.226058\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −8.52951 −1.05796
\(66\) 0 0
\(67\) 3.40617 + 1.41088i 0.416130 + 0.172367i 0.580918 0.813962i \(-0.302694\pi\)
−0.164788 + 0.986329i \(0.552694\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −9.66157 + 9.66157i −1.14662 + 1.14662i −0.159403 + 0.987214i \(0.550957\pi\)
−0.987214 + 0.159403i \(0.949043\pi\)
\(72\) 0 0
\(73\) −7.55765 7.55765i −0.884556 0.884556i 0.109438 0.993994i \(-0.465095\pi\)
−0.993994 + 0.109438i \(0.965095\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.43882 3.47363i 0.163969 0.395856i
\(78\) 0 0
\(79\) 17.2176i 1.93714i 0.248750 + 0.968568i \(0.419980\pi\)
−0.248750 + 0.968568i \(0.580020\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 4.82981 11.6602i 0.530140 1.27987i −0.401290 0.915951i \(-0.631438\pi\)
0.931430 0.363921i \(-0.118562\pi\)
\(84\) 0 0
\(85\) −6.17471 + 2.55765i −0.669741 + 0.277416i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 5.43882 5.43882i 0.576514 0.576514i −0.357427 0.933941i \(-0.616346\pi\)
0.933941 + 0.357427i \(0.116346\pi\)
\(90\) 0 0
\(91\) 1.66157 + 4.01138i 0.174179 + 0.420506i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −0.940588 −0.0965023
\(96\) 0 0
\(97\) 6.15862 0.625313 0.312657 0.949866i \(-0.398781\pi\)
0.312657 + 0.949866i \(0.398781\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 3.09671 + 7.47612i 0.308134 + 0.743902i 0.999766 + 0.0216512i \(0.00689233\pi\)
−0.691631 + 0.722251i \(0.743108\pi\)
\(102\) 0 0
\(103\) 4.72764 4.72764i 0.465828 0.465828i −0.434732 0.900560i \(-0.643157\pi\)
0.900560 + 0.434732i \(0.143157\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2.57774 1.06774i 0.249200 0.103222i −0.254587 0.967050i \(-0.581940\pi\)
0.503787 + 0.863828i \(0.331940\pi\)
\(108\) 0 0
\(109\) 3.46094 8.35544i 0.331498 0.800306i −0.666976 0.745079i \(-0.732412\pi\)
0.998474 0.0552270i \(-0.0175882\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 11.7757i 1.10776i −0.832596 0.553881i \(-0.813146\pi\)
0.832596 0.553881i \(-0.186854\pi\)
\(114\) 0 0
\(115\) 1.33490 3.22274i 0.124480 0.300522i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2.40569 + 2.40569i 0.220529 + 0.220529i
\(120\) 0 0
\(121\) 3.52035 3.52035i 0.320032 0.320032i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11.2426 + 4.65685i 1.00557 + 0.416522i
\(126\) 0 0
\(127\) −13.0590 −1.15880 −0.579400 0.815043i \(-0.696713\pi\)
−0.579400 + 0.815043i \(0.696713\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −6.52146 2.70128i −0.569783 0.236012i 0.0791431 0.996863i \(-0.474782\pi\)
−0.648926 + 0.760851i \(0.724782\pi\)
\(132\) 0 0
\(133\) 0.183228 + 0.442353i 0.0158879 + 0.0383568i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −4.88118 4.88118i −0.417027 0.417027i 0.467151 0.884178i \(-0.345281\pi\)
−0.884178 + 0.467151i \(0.845281\pi\)
\(138\) 0 0
\(139\) 11.7837 4.88098i 0.999482 0.413999i 0.177875 0.984053i \(-0.443078\pi\)
0.821607 + 0.570054i \(0.193078\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 18.4522i 1.54305i
\(144\) 0 0
\(145\) 11.4768i 0.953093i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 5.73838 2.37691i 0.470106 0.194724i −0.135038 0.990840i \(-0.543116\pi\)
0.605144 + 0.796116i \(0.293116\pi\)
\(150\) 0 0
\(151\) −11.1504 11.1504i −0.907405 0.907405i 0.0886573 0.996062i \(-0.471742\pi\)
−0.996062 + 0.0886573i \(0.971742\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −0.828427 2.00000i −0.0665409 0.160644i
\(156\) 0 0
\(157\) 1.22496 + 0.507395i 0.0977624 + 0.0404945i 0.431029 0.902338i \(-0.358151\pi\)
−0.333266 + 0.942833i \(0.608151\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −1.77568 −0.139943
\(162\) 0 0
\(163\) −21.3218 8.83176i −1.67005 0.691757i −0.671272 0.741211i \(-0.734252\pi\)
−0.998776 + 0.0494542i \(0.984252\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 10.8863 10.8863i 0.842404 0.842404i −0.146767 0.989171i \(-0.546887\pi\)
0.989171 + 0.146767i \(0.0468867\pi\)
\(168\) 0 0
\(169\) −5.87515 5.87515i −0.451935 0.451935i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −0.735246 + 1.77504i −0.0558997 + 0.134954i −0.949362 0.314184i \(-0.898269\pi\)
0.893462 + 0.449138i \(0.148269\pi\)
\(174\) 0 0
\(175\) 1.49157i 0.112752i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −1.87980 + 4.53823i −0.140503 + 0.339203i −0.978430 0.206578i \(-0.933767\pi\)
0.837928 + 0.545782i \(0.183767\pi\)
\(180\) 0 0
\(181\) 1.87868 0.778175i 0.139641 0.0578413i −0.311768 0.950158i \(-0.600921\pi\)
0.451410 + 0.892317i \(0.350921\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −1.74441 + 1.74441i −0.128251 + 0.128251i
\(186\) 0 0
\(187\) 5.53304 + 13.3579i 0.404616 + 0.976829i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −19.4022 −1.40389 −0.701946 0.712231i \(-0.747685\pi\)
−0.701946 + 0.712231i \(0.747685\pi\)
\(192\) 0 0
\(193\) −18.0461 −1.29898 −0.649492 0.760368i \(-0.725018\pi\)
−0.649492 + 0.760368i \(0.725018\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0.0865175 + 0.208872i 0.00616412 + 0.0148815i 0.926932 0.375230i \(-0.122436\pi\)
−0.920768 + 0.390112i \(0.872436\pi\)
\(198\) 0 0
\(199\) 11.8992 11.8992i 0.843513 0.843513i −0.145801 0.989314i \(-0.546576\pi\)
0.989314 + 0.145801i \(0.0465759\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 5.39745 2.23570i 0.378827 0.156915i
\(204\) 0 0
\(205\) 1.66981 4.03127i 0.116624 0.281556i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2.03480i 0.140750i
\(210\) 0 0
\(211\) 3.73060 9.00647i 0.256825 0.620031i −0.741900 0.670511i \(-0.766075\pi\)
0.998725 + 0.0504799i \(0.0160751\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 3.60568 + 3.60568i 0.245906 + 0.245906i
\(216\) 0 0
\(217\) −0.779208 + 0.779208i −0.0528961 + 0.0528961i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −15.4259 6.38960i −1.03766 0.429811i
\(222\) 0 0
\(223\) −22.6174 −1.51458 −0.757288 0.653081i \(-0.773476\pi\)
−0.757288 + 0.653081i \(0.773476\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −9.51294 3.94039i −0.631396 0.261533i 0.0439500 0.999034i \(-0.486006\pi\)
−0.675346 + 0.737501i \(0.736006\pi\)
\(228\) 0 0
\(229\) −6.53200 15.7697i −0.431647 1.04209i −0.978756 0.205027i \(-0.934272\pi\)
0.547109 0.837061i \(-0.315728\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −10.4486 10.4486i −0.684512 0.684512i 0.276502 0.961013i \(-0.410825\pi\)
−0.961013 + 0.276502i \(0.910825\pi\)
\(234\) 0 0
\(235\) −2.55765 + 1.05941i −0.166843 + 0.0691084i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 11.6733i 0.755085i −0.925992 0.377543i \(-0.876769\pi\)
0.925992 0.377543i \(-0.123231\pi\)
\(240\) 0 0
\(241\) 13.8288i 0.890791i −0.895334 0.445396i \(-0.853063\pi\)
0.895334 0.445396i \(-0.146937\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −10.4395 + 4.32417i −0.666953 + 0.276261i
\(246\) 0 0
\(247\) −1.66157 1.66157i −0.105723 0.105723i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 5.38745 + 13.0065i 0.340053 + 0.820961i 0.997710 + 0.0676429i \(0.0215479\pi\)
−0.657656 + 0.753318i \(0.728452\pi\)
\(252\) 0 0
\(253\) −6.97186 2.88784i −0.438317 0.181557i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 18.9043 1.17922 0.589609 0.807689i \(-0.299282\pi\)
0.589609 + 0.807689i \(0.299282\pi\)
\(258\) 0 0
\(259\) 1.16020 + 0.480569i 0.0720911 + 0.0298611i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 13.9086 13.9086i 0.857643 0.857643i −0.133417 0.991060i \(-0.542595\pi\)
0.991060 + 0.133417i \(0.0425948\pi\)
\(264\) 0 0
\(265\) −6.49824 6.49824i −0.399183 0.399183i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −5.05209 + 12.1968i −0.308031 + 0.743653i 0.691737 + 0.722149i \(0.256846\pi\)
−0.999769 + 0.0215042i \(0.993154\pi\)
\(270\) 0 0
\(271\) 4.41512i 0.268199i −0.990968 0.134100i \(-0.957186\pi\)
0.990968 0.134100i \(-0.0428142\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2.42579 5.85637i 0.146280 0.353152i
\(276\) 0 0
\(277\) −23.0454 + 9.54573i −1.38467 + 0.573547i −0.945725 0.324969i \(-0.894646\pi\)
−0.438941 + 0.898516i \(0.644646\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 5.83509 5.83509i 0.348092 0.348092i −0.511306 0.859399i \(-0.670838\pi\)
0.859399 + 0.511306i \(0.170838\pi\)
\(282\) 0 0
\(283\) −1.31992 3.18656i −0.0784609 0.189421i 0.879782 0.475378i \(-0.157689\pi\)
−0.958243 + 0.285957i \(0.907689\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −2.22117 −0.131111
\(288\) 0 0
\(289\) 3.91688 0.230405
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −2.89663 6.99307i −0.169223 0.408540i 0.816403 0.577482i \(-0.195965\pi\)
−0.985626 + 0.168943i \(0.945965\pi\)
\(294\) 0 0
\(295\) −6.99176 + 6.99176i −0.407076 + 0.407076i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 8.05117 3.33490i 0.465611 0.192862i
\(300\) 0 0
\(301\) 0.993336 2.39813i 0.0572550 0.138226i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 27.4205i 1.57009i
\(306\) 0 0
\(307\) 3.14481 7.59225i 0.179484 0.433313i −0.808375 0.588668i \(-0.799652\pi\)
0.987859 + 0.155356i \(0.0496524\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −15.0543 15.0543i −0.853651 0.853651i 0.136930 0.990581i \(-0.456277\pi\)
−0.990581 + 0.136930i \(0.956277\pi\)
\(312\) 0 0
\(313\) 18.3365 18.3365i 1.03644 1.03644i 0.0371274 0.999311i \(-0.488179\pi\)
0.999311 0.0371274i \(-0.0118208\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 9.52348 + 3.94476i 0.534892 + 0.221560i 0.633744 0.773543i \(-0.281517\pi\)
−0.0988523 + 0.995102i \(0.531517\pi\)
\(318\) 0 0
\(319\) 24.8280 1.39010
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −1.70108 0.704611i −0.0946507 0.0392056i
\(324\) 0 0
\(325\) 2.80132 + 6.76299i 0.155389 + 0.375143i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0.996470 + 0.996470i 0.0549372 + 0.0549372i
\(330\) 0 0
\(331\) −7.57421 + 3.13734i −0.416316 + 0.172444i −0.581002 0.813902i \(-0.697339\pi\)
0.164685 + 0.986346i \(0.447339\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 6.81234i 0.372198i
\(336\) 0 0
\(337\) 16.8910i 0.920110i 0.887890 + 0.460055i \(0.152170\pi\)
−0.887890 + 0.460055i \(0.847830\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −4.32666 + 1.79216i −0.234302 + 0.0970510i
\(342\) 0 0
\(343\) 8.72293 + 8.72293i 0.470994 + 0.470994i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −11.6582 28.1455i −0.625847 1.51093i −0.844739 0.535179i \(-0.820244\pi\)
0.218892 0.975749i \(-0.429756\pi\)
\(348\) 0 0
\(349\) 9.99044 + 4.13818i 0.534776 + 0.221512i 0.633694 0.773584i \(-0.281538\pi\)
−0.0989174 + 0.995096i \(0.531538\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −0.673711 −0.0358580 −0.0179290 0.999839i \(-0.505707\pi\)
−0.0179290 + 0.999839i \(0.505707\pi\)
\(354\) 0 0
\(355\) −23.3251 9.66157i −1.23797 0.512783i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 3.92568 3.92568i 0.207190 0.207190i −0.595882 0.803072i \(-0.703198\pi\)
0.803072 + 0.595882i \(0.203198\pi\)
\(360\) 0 0
\(361\) 13.2518 + 13.2518i 0.697463 + 0.697463i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 7.55765 18.2458i 0.395585 0.955027i
\(366\) 0 0
\(367\) 16.4759i 0.860033i −0.902821 0.430016i \(-0.858508\pi\)
0.902821 0.430016i \(-0.141492\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −1.79021 + 4.32195i −0.0929431 + 0.224384i
\(372\) 0 0
\(373\) −12.6790 + 5.25180i −0.656492 + 0.271928i −0.685962 0.727638i \(-0.740618\pi\)
0.0294695 + 0.999566i \(0.490618\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −20.2739 + 20.2739i −1.04416 + 1.04416i
\(378\) 0 0
\(379\) 5.06746 + 12.2339i 0.260298 + 0.628414i 0.998957 0.0456649i \(-0.0145406\pi\)
−0.738659 + 0.674079i \(0.764541\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 14.5667 0.744322 0.372161 0.928168i \(-0.378617\pi\)
0.372161 + 0.928168i \(0.378617\pi\)
\(384\) 0 0
\(385\) 6.94725 0.354065
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −14.2795 34.4739i −0.724002 1.74789i −0.661617 0.749842i \(-0.730129\pi\)
−0.0623850 0.998052i \(-0.519871\pi\)
\(390\) 0 0
\(391\) 4.82843 4.82843i 0.244184 0.244184i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −29.3923 + 12.1747i −1.47889 + 0.612576i
\(396\) 0 0
\(397\) 8.88405 21.4480i 0.445877 1.07644i −0.527975 0.849260i \(-0.677048\pi\)
0.973852 0.227183i \(-0.0729516\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 2.51509i 0.125598i −0.998026 0.0627989i \(-0.979997\pi\)
0.998026 0.0627989i \(-0.0200027\pi\)
\(402\) 0 0
\(403\) 2.06961 4.99647i 0.103094 0.248892i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 3.77373 + 3.77373i 0.187057 + 0.187057i
\(408\) 0 0
\(409\) −5.32666 + 5.32666i −0.263386 + 0.263386i −0.826428 0.563042i \(-0.809631\pi\)
0.563042 + 0.826428i \(0.309631\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 4.65019 + 1.92617i 0.228821 + 0.0947807i
\(414\) 0 0
\(415\) 23.3204 1.14475
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 10.5509 + 4.37032i 0.515444 + 0.213504i 0.625214 0.780453i \(-0.285012\pi\)
−0.109770 + 0.993957i \(0.535012\pi\)
\(420\) 0 0
\(421\) 1.72505 + 4.16464i 0.0840739 + 0.202972i 0.960326 0.278881i \(-0.0899636\pi\)
−0.876252 + 0.481854i \(0.839964\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 4.05588 + 4.05588i 0.196739 + 0.196739i
\(426\) 0 0
\(427\) 12.8957 5.34157i 0.624066 0.258497i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 16.9800i 0.817897i −0.912557 0.408949i \(-0.865896\pi\)
0.912557 0.408949i \(-0.134104\pi\)
\(432\) 0 0
\(433\) 16.9567i 0.814886i 0.913231 + 0.407443i \(0.133579\pi\)
−0.913231 + 0.407443i \(0.866421\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0.887839 0.367755i 0.0424711 0.0175921i
\(438\) 0 0
\(439\) −10.5596 10.5596i −0.503982 0.503982i 0.408691 0.912673i \(-0.365985\pi\)
−0.912673 + 0.408691i \(0.865985\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 6.31087 + 15.2358i 0.299838 + 0.723874i 0.999952 + 0.00984190i \(0.00313282\pi\)
−0.700113 + 0.714032i \(0.746867\pi\)
\(444\) 0 0
\(445\) 13.1305 + 5.43882i 0.622444 + 0.257825i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −8.07197 −0.380940 −0.190470 0.981693i \(-0.561001\pi\)
−0.190470 + 0.981693i \(0.561001\pi\)
\(450\) 0 0
\(451\) −8.72098 3.61235i −0.410655 0.170099i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −5.67294 + 5.67294i −0.265952 + 0.265952i
\(456\) 0 0
\(457\) −7.68314 7.68314i −0.359402 0.359402i 0.504191 0.863592i \(-0.331791\pi\)
−0.863592 + 0.504191i \(0.831791\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 5.90199 14.2487i 0.274883 0.663627i −0.724796 0.688964i \(-0.758066\pi\)
0.999679 + 0.0253371i \(0.00806593\pi\)
\(462\) 0 0
\(463\) 27.3231i 1.26981i 0.772589 + 0.634907i \(0.218962\pi\)
−0.772589 + 0.634907i \(0.781038\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −9.40577 + 22.7075i −0.435247 + 1.05078i 0.542323 + 0.840170i \(0.317545\pi\)
−0.977570 + 0.210610i \(0.932455\pi\)
\(468\) 0 0
\(469\) 3.20380 1.32706i 0.147938 0.0612779i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 7.80029 7.80029i 0.358658 0.358658i
\(474\) 0 0
\(475\) 0.308915 + 0.745786i 0.0141740 + 0.0342190i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 3.91155 0.178723 0.0893616 0.995999i \(-0.471517\pi\)
0.0893616 + 0.995999i \(0.471517\pi\)
\(480\) 0 0
\(481\) −6.16305 −0.281011
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 4.35480 + 10.5134i 0.197741 + 0.477390i
\(486\) 0 0
\(487\) 8.14685 8.14685i 0.369169 0.369169i −0.498005 0.867174i \(-0.665934\pi\)
0.867174 + 0.498005i \(0.165934\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 11.2886 4.67590i 0.509448 0.211020i −0.113127 0.993581i \(-0.536087\pi\)
0.622575 + 0.782560i \(0.286087\pi\)
\(492\) 0 0
\(493\) −8.59744 + 20.7561i −0.387209 + 0.934806i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 12.8517i 0.576479i
\(498\) 0 0
\(499\) −12.4071 + 29.9533i −0.555417 + 1.34089i 0.357944 + 0.933743i \(0.383478\pi\)
−0.913361 + 0.407152i \(0.866522\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 8.77059 + 8.77059i 0.391061 + 0.391061i 0.875066 0.484004i \(-0.160818\pi\)
−0.484004 + 0.875066i \(0.660818\pi\)
\(504\) 0 0
\(505\) −10.5728 + 10.5728i −0.470485 + 0.470485i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −20.0994 8.32546i −0.890892 0.369020i −0.110181 0.993912i \(-0.535143\pi\)
−0.780711 + 0.624892i \(0.785143\pi\)
\(510\) 0 0
\(511\) −10.0531 −0.444724
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 11.4135 + 4.72764i 0.502941 + 0.208325i
\(516\) 0 0
\(517\) 2.29186 + 5.53304i 0.100796 + 0.243343i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 29.8910 + 29.8910i 1.30955 + 1.30955i 0.921741 + 0.387807i \(0.126767\pi\)
0.387807 + 0.921741i \(0.373233\pi\)
\(522\) 0 0
\(523\) −32.7654 + 13.5719i −1.43273 + 0.593456i −0.958024 0.286688i \(-0.907446\pi\)
−0.474706 + 0.880144i \(0.657446\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 4.23765i 0.184595i
\(528\) 0 0
\(529\) 19.4361i 0.845046i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 10.0711 4.17157i 0.436226 0.180691i
\(534\) 0 0
\(535\) 3.64548 + 3.64548i 0.157608 + 0.157608i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 9.35460 + 22.5840i 0.402931 + 0.972762i
\(540\) 0 0
\(541\) −11.2925 4.67751i −0.485502 0.201102i 0.126486 0.991968i \(-0.459630\pi\)
−0.611988 + 0.790867i \(0.709630\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 16.7109 0.715815
\(546\) 0 0
\(547\) 19.1256 + 7.92207i 0.817750 + 0.338723i 0.752042 0.659116i \(-0.229069\pi\)
0.0657087 + 0.997839i \(0.479069\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −2.23570 + 2.23570i −0.0952439 + 0.0952439i
\(552\) 0 0
\(553\) 11.4514 + 11.4514i 0.486962 + 0.486962i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −12.3617 + 29.8439i −0.523783 + 1.26452i 0.411753 + 0.911295i \(0.364916\pi\)
−0.935537 + 0.353229i \(0.885084\pi\)
\(558\) 0 0
\(559\) 12.7390i 0.538803i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −10.5540 + 25.4797i −0.444800 + 1.07384i 0.529444 + 0.848345i \(0.322400\pi\)
−0.974244 + 0.225497i \(0.927600\pi\)
\(564\) 0 0
\(565\) 20.1023 8.32666i 0.845712 0.350305i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 23.7855 23.7855i 0.997139 0.997139i −0.00285688 0.999996i \(-0.500909\pi\)
0.999996 + 0.00285688i \(0.000909375\pi\)
\(570\) 0 0
\(571\) 0.904405 + 2.18343i 0.0378482 + 0.0913736i 0.941673 0.336528i \(-0.109253\pi\)
−0.903825 + 0.427902i \(0.859253\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −2.99371 −0.124846
\(576\) 0 0
\(577\) 24.8839 1.03593 0.517965 0.855402i \(-0.326690\pi\)
0.517965 + 0.855402i \(0.326690\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −4.54286 10.9674i −0.188469 0.455006i
\(582\) 0 0
\(583\) −14.0578 + 14.0578i −0.582216 + 0.582216i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −40.1685 + 16.6383i −1.65793 + 0.686738i −0.997917 0.0645151i \(-0.979450\pi\)
−0.660015 + 0.751253i \(0.729450\pi\)
\(588\) 0 0
\(589\) 0.228225 0.550984i 0.00940384 0.0227029i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 9.10197i 0.373773i 0.982382 + 0.186886i \(0.0598397\pi\)
−0.982382 + 0.186886i \(0.940160\pi\)
\(594\) 0 0
\(595\) −2.40569 + 5.80785i −0.0986238 + 0.238099i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 3.04488 + 3.04488i 0.124410 + 0.124410i 0.766571 0.642160i \(-0.221962\pi\)
−0.642160 + 0.766571i \(0.721962\pi\)
\(600\) 0 0
\(601\) 9.53880 9.53880i 0.389096 0.389096i −0.485269 0.874365i \(-0.661278\pi\)
0.874365 + 0.485269i \(0.161278\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 8.49887 + 3.52035i 0.345528 + 0.143123i
\(606\) 0 0
\(607\) 3.66391 0.148714 0.0743568 0.997232i \(-0.476310\pi\)
0.0743568 + 0.997232i \(0.476310\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −6.38960 2.64666i −0.258496 0.107072i
\(612\) 0 0
\(613\) −11.6012 28.0079i −0.468570 1.13123i −0.964788 0.263029i \(-0.915278\pi\)
0.496218 0.868198i \(-0.334722\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −5.86100 5.86100i −0.235955 0.235955i 0.579218 0.815173i \(-0.303358\pi\)
−0.815173 + 0.579218i \(0.803358\pi\)
\(618\) 0 0
\(619\) 36.9173 15.2917i 1.48383 0.614624i 0.513868 0.857869i \(-0.328212\pi\)
0.969965 + 0.243245i \(0.0782120\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 7.23468i 0.289851i
\(624\) 0 0
\(625\) 14.5563i 0.582254i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −4.46157 + 1.84804i −0.177895 + 0.0736864i
\(630\) 0 0
\(631\) 21.0543 + 21.0543i 0.838159 + 0.838159i 0.988616 0.150458i \(-0.0480748\pi\)
−0.150458 + 0.988616i \(0.548075\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −9.23412 22.2931i −0.366445 0.884676i
\(636\) 0 0
\(637\) −26.0802 10.8028i −1.03334 0.428022i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 6.57429 0.259669 0.129835 0.991536i \(-0.458555\pi\)
0.129835 + 0.991536i \(0.458555\pi\)
\(642\) 0 0
\(643\) 24.1050 + 9.98462i 0.950608 + 0.393755i 0.803459 0.595360i \(-0.202990\pi\)
0.147149 + 0.989114i \(0.452990\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 19.1598 19.1598i 0.753250 0.753250i −0.221835 0.975084i \(-0.571205\pi\)
0.975084 + 0.221835i \(0.0712046\pi\)
\(648\) 0 0
\(649\) 15.1255 + 15.1255i 0.593727 + 0.593727i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 5.73339 13.8416i 0.224365 0.541665i −0.771109 0.636703i \(-0.780298\pi\)
0.995474 + 0.0950389i \(0.0302975\pi\)
\(654\) 0 0
\(655\) 13.0429i 0.509629i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −0.202554 + 0.489009i −0.00789039 + 0.0190491i −0.927776 0.373139i \(-0.878282\pi\)
0.919885 + 0.392188i \(0.128282\pi\)
\(660\) 0 0
\(661\) 6.45241 2.67268i 0.250970 0.103955i −0.253652 0.967295i \(-0.581632\pi\)
0.504622 + 0.863340i \(0.331632\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −0.625581 + 0.625581i −0.0242590 + 0.0242590i
\(666\) 0 0
\(667\) −4.48723 10.8331i −0.173746 0.419461i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 59.3196 2.29001
\(672\) 0 0
\(673\) −24.3285 −0.937793 −0.468897 0.883253i \(-0.655348\pi\)
−0.468897 + 0.883253i \(0.655348\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −1.60737 3.88054i −0.0617763 0.149141i 0.889977 0.456005i \(-0.150720\pi\)
−0.951753 + 0.306864i \(0.900720\pi\)
\(678\) 0 0
\(679\) 4.09607 4.09607i 0.157193 0.157193i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 24.8133 10.2780i 0.949455 0.393277i 0.146429 0.989221i \(-0.453222\pi\)
0.803026 + 0.595944i \(0.203222\pi\)
\(684\) 0 0
\(685\) 4.88118 11.7842i 0.186500 0.450251i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 22.9585i 0.874650i
\(690\) 0 0
\(691\) −8.56885 + 20.6870i −0.325974 + 0.786972i 0.672909 + 0.739725i \(0.265045\pi\)
−0.998883 + 0.0472463i \(0.984955\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 16.6647 + 16.6647i 0.632128 + 0.632128i
\(696\) 0 0
\(697\) 6.03979 6.03979i 0.228774 0.228774i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −28.1557 11.6625i −1.06343 0.440486i −0.218760 0.975779i \(-0.570201\pi\)
−0.844667 + 0.535293i \(0.820201\pi\)
\(702\) 0 0
\(703\) −0.679628 −0.0256326
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 7.03195 + 2.91273i 0.264464 + 0.109544i
\(708\) 0 0
\(709\) 12.4408 + 30.0346i 0.467223 + 1.12797i 0.965370 + 0.260883i \(0.0840136\pi\)
−0.498148 + 0.867092i \(0.665986\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 1.56394 + 1.56394i 0.0585699 + 0.0585699i
\(714\) 0 0
\(715\) −31.4998 + 13.0476i −1.17803 + 0.487954i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 33.6333i 1.25431i 0.778894 + 0.627155i \(0.215781\pi\)
−0.778894 + 0.627155i \(0.784219\pi\)
\(720\) 0 0
\(721\) 6.28867i 0.234202i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 9.09984 3.76928i 0.337960 0.139988i
\(726\) 0 0
\(727\) 7.43334 + 7.43334i 0.275687 + 0.275687i 0.831385 0.555697i \(-0.187549\pi\)
−0.555697 + 0.831385i \(0.687549\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 3.81991 + 9.22207i 0.141284 + 0.341090i
\(732\) 0 0
\(733\) −0.328598 0.136110i −0.0121371 0.00502733i 0.376607 0.926373i \(-0.377091\pi\)
−0.388744 + 0.921346i \(0.627091\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 14.7373 0.542857
\(738\) 0 0
\(739\) 43.8857 + 18.1780i 1.61436 + 0.668690i 0.993352 0.115114i \(-0.0367234\pi\)
0.621008 + 0.783804i \(0.286723\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −30.3220 + 30.3220i −1.11240 + 1.11240i −0.119580 + 0.992825i \(0.538155\pi\)
−0.992825 + 0.119580i \(0.961845\pi\)
\(744\) 0 0
\(745\) 8.11529 + 8.11529i 0.297321 + 0.297321i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 1.00430 2.42459i 0.0366963 0.0885927i
\(750\) 0 0
\(751\) 51.3686i 1.87447i −0.348701 0.937234i \(-0.613377\pi\)
0.348701 0.937234i \(-0.386623\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 11.1504 26.9194i 0.405804 0.979697i
\(756\) 0 0
\(757\) 15.2644 6.32270i 0.554793 0.229803i −0.0876302 0.996153i \(-0.527929\pi\)
0.642423 + 0.766350i \(0.277929\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −26.6859 + 26.6859i −0.967362 + 0.967362i −0.999484 0.0321218i \(-0.989774\pi\)
0.0321218 + 0.999484i \(0.489774\pi\)
\(762\) 0 0
\(763\) −3.25531 7.85902i −0.117850 0.284516i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −24.7021 −0.891943
\(768\) 0 0
\(769\) 44.0390 1.58809 0.794044 0.607861i \(-0.207972\pi\)
0.794044 + 0.607861i \(0.207972\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 15.4001 + 37.1790i 0.553902 + 1.33724i 0.914526 + 0.404526i \(0.132564\pi\)
−0.360625 + 0.932711i \(0.617436\pi\)
\(774\) 0 0
\(775\) −1.31371 + 1.31371i −0.0471898 + 0.0471898i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1.11058 0.460018i 0.0397908 0.0164819i
\(780\) 0 0
\(781\) −20.9012 + 50.4599i −0.747903 + 1.80560i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 2.44992i 0.0874413i
\(786\) 0 0
\(787\) −0.948632 + 2.29020i −0.0338151 + 0.0816368i −0.939885 0.341491i \(-0.889068\pi\)
0.906070 + 0.423128i \(0.139068\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −7.83196 7.83196i −0.278472 0.278472i
\(792\) 0 0
\(793\) −48.4388 + 48.4388i −1.72011 + 1.72011i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 2.76562 + 1.14556i 0.0979632 + 0.0405777i 0.431127 0.902291i \(-0.358116\pi\)
−0.333164 + 0.942869i \(0.608116\pi\)
\(798\) 0 0
\(799\) −5.41921 −0.191718
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −39.4717 16.3497i −1.39292 0.576968i
\(804\) 0 0
\(805\) −1.25559 3.03127i −0.0442539 0.106838i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 7.12825 + 7.12825i 0.250616 + 0.250616i 0.821223 0.570607i \(-0.193292\pi\)
−0.570607 + 0.821223i \(0.693292\pi\)
\(810\) 0 0
\(811\) −27.4750 + 11.3805i −0.964777 + 0.399624i −0.808765 0.588131i \(-0.799864\pi\)
−0.156012 + 0.987755i \(0.549864\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 42.6435i 1.49374i
\(816\) 0 0
\(817\) 1.40479i 0.0491474i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −34.1861 + 14.1603i −1.19310 + 0.494199i −0.888764 0.458364i \(-0.848435\pi\)
−0.304339 + 0.952564i \(0.598435\pi\)
\(822\) 0 0
\(823\) −27.3810 27.3810i −0.954440 0.954440i 0.0445659 0.999006i \(-0.485810\pi\)
−0.999006 + 0.0445659i \(0.985810\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 7.98030 + 19.2661i 0.277502 + 0.669950i 0.999765 0.0216689i \(-0.00689796\pi\)
−0.722263 + 0.691619i \(0.756898\pi\)
\(828\) 0 0
\(829\) −3.59585 1.48945i −0.124889 0.0517307i 0.319364 0.947632i \(-0.396531\pi\)
−0.444253 + 0.895901i \(0.646531\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −22.1194 −0.766391
\(834\) 0 0
\(835\) 26.2818 + 10.8863i 0.909518 + 0.376735i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 13.8461 13.8461i 0.478020 0.478020i −0.426478 0.904498i \(-0.640246\pi\)
0.904498 + 0.426478i \(0.140246\pi\)
\(840\) 0 0
\(841\) 6.77318 + 6.77318i 0.233558 + 0.233558i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 5.87515 14.1839i 0.202111 0.487940i
\(846\) 0 0
\(847\) 4.68274i 0.160901i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0.964543 2.32861i 0.0330641 0.0798239i
\(852\) 0 0
\(853\) 18.0597 7.48055i 0.618351 0.256129i −0.0514436 0.998676i \(-0.516382\pi\)
0.669794 + 0.742547i \(0.266382\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 6.35294 6.35294i 0.217012 0.217012i −0.590226 0.807238i \(-0.700961\pi\)
0.807238 + 0.590226i \(0.200961\pi\)
\(858\) 0 0
\(859\) −9.72800 23.4855i −0.331915 0.801314i −0.998440 0.0558315i \(-0.982219\pi\)
0.666525 0.745483i \(-0.267781\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −0.0884535 −0.00301099 −0.00150550 0.999999i \(-0.500479\pi\)
−0.00150550 + 0.999999i \(0.500479\pi\)
\(864\) 0 0
\(865\) −3.55008 −0.120706
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 26.3379 + 63.5854i 0.893453 + 2.15699i
\(870\) 0 0
\(871\) −12.0341 + 12.0341i −0.407761 + 0.407761i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 10.5747 4.38018i 0.357490 0.148077i
\(876\) 0 0
\(877\) −4.24514 + 10.2487i −0.143348 + 0.346073i −0.979205 0.202875i \(-0.934971\pi\)
0.835857 + 0.548948i \(0.184971\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 23.9859i 0.808105i −0.914736 0.404052i \(-0.867601\pi\)
0.914736 0.404052i \(-0.132399\pi\)
\(882\) 0 0
\(883\) 7.74892 18.7075i 0.260772 0.629559i −0.738215 0.674566i \(-0.764331\pi\)
0.998987 + 0.0450067i \(0.0143309\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −36.4494 36.4494i −1.22385 1.22385i −0.966252 0.257600i \(-0.917068\pi\)
−0.257600 0.966252i \(-0.582932\pi\)
\(888\) 0 0
\(889\) −8.68550 + 8.68550i −0.291302 + 0.291302i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −0.704611 0.291859i −0.0235789 0.00976670i
\(894\) 0 0
\(895\) −9.07646 −0.303392
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −6.72293 2.78473i −0.224222 0.0928759i
\(900\) 0 0
\(901\) −6.88431 16.6202i −0.229350 0.553699i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 2.65685 + 2.65685i 0.0883168 + 0.0883168i
\(906\) 0 0
\(907\) 38.2753 15.8541i 1.27091 0.526428i 0.357669 0.933848i \(-0.383572\pi\)
0.913241 + 0.407421i \(0.133572\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 12.5214i 0.414851i −0.978251 0.207426i \(-0.933492\pi\)
0.978251 0.207426i \(-0.0665085\pi\)
\(912\) 0 0
\(913\) 50.4497i 1.66964i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −6.13401 + 2.54079i −0.202563 + 0.0839043i
\(918\) 0 0
\(919\) −1.19513 1.19513i −0.0394238 0.0394238i 0.687120 0.726544i \(-0.258875\pi\)
−0.726544 + 0.687120i \(0.758875\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −24.1369 58.2715i −0.794475 1.91803i
\(924\) 0 0
\(925\) 1.95604 + 0.810217i 0.0643141 + 0.0266398i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −45.1410 −1.48103 −0.740514 0.672041i \(-0.765418\pi\)
−0.740514 + 0.672041i \(0.765418\pi\)
\(930\) 0 0
\(931\) −2.87599 1.19127i −0.0942566 0.0390424i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −18.8910 + 18.8910i −0.617801 + 0.617801i
\(936\) 0 0
\(937\) 2.58002 + 2.58002i 0.0842857 + 0.0842857i 0.747993 0.663707i \(-0.231018\pi\)
−0.663707 + 0.747993i \(0.731018\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −2.24720 + 5.42523i −0.0732568 + 0.176857i −0.956266 0.292498i \(-0.905514\pi\)
0.883009 + 0.469355i \(0.155514\pi\)
\(942\) 0 0
\(943\) 4.45807i 0.145175i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 17.5640 42.4032i 0.570753 1.37792i −0.330162 0.943924i \(-0.607103\pi\)
0.900915 0.433996i \(-0.142897\pi\)
\(948\) 0 0
\(949\) 45.5822 18.8808i 1.47966 0.612896i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −14.8079 + 14.8079i −0.479673 + 0.479673i −0.905027 0.425354i \(-0.860150\pi\)
0.425354 + 0.905027i \(0.360150\pi\)
\(954\) 0 0
\(955\) −13.7194 33.1216i −0.443949 1.07179i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −6.49290 −0.209667
\(960\) 0 0
\(961\) −29.6274 −0.955723
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −12.7605 30.8066i −0.410775 0.991698i
\(966\) 0 0
\(967\) −24.8604 + 24.8604i −0.799455 + 0.799455i −0.983010 0.183554i \(-0.941240\pi\)
0.183554 + 0.983010i \(0.441240\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −23.3388 + 9.66725i −0.748978 + 0.310237i −0.724324 0.689459i \(-0.757848\pi\)
−0.0246533 + 0.999696i \(0.507848\pi\)
\(972\) 0 0
\(973\) 4.59099 11.0836i 0.147180 0.355325i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 54.7057i 1.75019i −0.483952 0.875094i \(-0.660799\pi\)
0.483952 0.875094i \(-0.339201\pi\)
\(978\) 0 0
\(979\) 11.7660 28.4056i 0.376042 0.907846i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −7.85315 7.85315i −0.250477 0.250477i 0.570689 0.821166i \(-0.306676\pi\)
−0.821166 + 0.570689i \(0.806676\pi\)
\(984\) 0 0
\(985\) −0.295389 + 0.295389i −0.00941188 + 0.00941188i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −4.81324 1.99371i −0.153052 0.0633963i
\(990\) 0 0
\(991\) 52.4878 1.66733 0.833665 0.552270i \(-0.186238\pi\)
0.833665 + 0.552270i \(0.186238\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 28.7272 + 11.8992i 0.910715 + 0.377230i
\(996\) 0 0
\(997\) 12.8431 + 31.0060i 0.406745 + 0.981970i 0.985988 + 0.166815i \(0.0533483\pi\)
−0.579243 + 0.815155i \(0.696652\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1152.2.v.b.721.1 8
3.2 odd 2 128.2.g.b.81.2 8
4.3 odd 2 288.2.v.b.253.1 8
12.11 even 2 32.2.g.b.29.2 yes 8
24.5 odd 2 256.2.g.c.161.1 8
24.11 even 2 256.2.g.d.161.2 8
32.11 odd 8 288.2.v.b.181.1 8
32.21 even 8 inner 1152.2.v.b.433.1 8
48.5 odd 4 512.2.g.f.65.2 8
48.11 even 4 512.2.g.h.65.1 8
48.29 odd 4 512.2.g.g.65.1 8
48.35 even 4 512.2.g.e.65.2 8
60.23 odd 4 800.2.ba.c.349.2 8
60.47 odd 4 800.2.ba.d.349.1 8
60.59 even 2 800.2.y.b.701.1 8
96.5 odd 8 256.2.g.c.97.1 8
96.11 even 8 32.2.g.b.21.2 8
96.29 odd 8 512.2.g.f.449.2 8
96.35 even 8 512.2.g.h.449.1 8
96.53 odd 8 128.2.g.b.49.2 8
96.59 even 8 256.2.g.d.97.2 8
96.77 odd 8 512.2.g.g.449.1 8
96.83 even 8 512.2.g.e.449.2 8
192.11 even 16 4096.2.a.k.1.2 8
192.53 odd 16 4096.2.a.q.1.7 8
192.107 even 16 4096.2.a.k.1.7 8
192.149 odd 16 4096.2.a.q.1.2 8
480.107 odd 8 800.2.ba.c.149.2 8
480.203 odd 8 800.2.ba.d.149.1 8
480.299 even 8 800.2.y.b.501.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
32.2.g.b.21.2 8 96.11 even 8
32.2.g.b.29.2 yes 8 12.11 even 2
128.2.g.b.49.2 8 96.53 odd 8
128.2.g.b.81.2 8 3.2 odd 2
256.2.g.c.97.1 8 96.5 odd 8
256.2.g.c.161.1 8 24.5 odd 2
256.2.g.d.97.2 8 96.59 even 8
256.2.g.d.161.2 8 24.11 even 2
288.2.v.b.181.1 8 32.11 odd 8
288.2.v.b.253.1 8 4.3 odd 2
512.2.g.e.65.2 8 48.35 even 4
512.2.g.e.449.2 8 96.83 even 8
512.2.g.f.65.2 8 48.5 odd 4
512.2.g.f.449.2 8 96.29 odd 8
512.2.g.g.65.1 8 48.29 odd 4
512.2.g.g.449.1 8 96.77 odd 8
512.2.g.h.65.1 8 48.11 even 4
512.2.g.h.449.1 8 96.35 even 8
800.2.y.b.501.1 8 480.299 even 8
800.2.y.b.701.1 8 60.59 even 2
800.2.ba.c.149.2 8 480.107 odd 8
800.2.ba.c.349.2 8 60.23 odd 4
800.2.ba.d.149.1 8 480.203 odd 8
800.2.ba.d.349.1 8 60.47 odd 4
1152.2.v.b.433.1 8 32.21 even 8 inner
1152.2.v.b.721.1 8 1.1 even 1 trivial
4096.2.a.k.1.2 8 192.11 even 16
4096.2.a.k.1.7 8 192.107 even 16
4096.2.a.q.1.2 8 192.149 odd 16
4096.2.a.q.1.7 8 192.53 odd 16