Properties

Label 512.2.g.g.449.1
Level $512$
Weight $2$
Character 512.449
Analytic conductor $4.088$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [512,2,Mod(65,512)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(512, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("512.65");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 512 = 2^{9} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 512.g (of order \(8\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.08834058349\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{8})\)
Coefficient field: 8.0.18939904.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 14x^{6} - 28x^{5} + 43x^{4} - 44x^{3} + 30x^{2} - 12x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 32)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 449.1
Root \(0.500000 + 0.0297061i\) of defining polynomial
Character \(\chi\) \(=\) 512.449
Dual form 512.2.g.g.65.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.943920 - 2.27882i) q^{3} +(-1.70711 - 0.707107i) q^{5} +(-0.665096 - 0.665096i) q^{7} +(-2.18073 + 2.18073i) q^{9} +(1.52971 - 3.69304i) q^{11} +(-4.26475 + 1.76652i) q^{13} +4.55765i q^{15} +3.61706i q^{17} +(-0.470294 + 0.194802i) q^{19} +(-0.887839 + 2.14343i) q^{21} +(-1.33490 + 1.33490i) q^{23} +(-1.12132 - 1.12132i) q^{25} +(0.191470 + 0.0793096i) q^{27} +(2.37691 + 5.73838i) q^{29} -1.17157 q^{31} -9.85970 q^{33} +(0.665096 + 1.60568i) q^{35} +(1.23348 + 0.510925i) q^{37} +(8.05117 + 8.05117i) q^{39} +(-1.66981 + 1.66981i) q^{41} +(-1.05608 + 2.54960i) q^{43} +(5.26475 - 2.18073i) q^{45} +1.49824i q^{47} -6.11529i q^{49} +(8.24264 - 3.41421i) q^{51} +(-1.90329 + 4.59495i) q^{53} +(-5.22274 + 5.22274i) q^{55} +(0.887839 + 0.887839i) q^{57} +(-4.94392 - 2.04784i) q^{59} +(-5.67897 - 13.7102i) q^{61} +2.90079 q^{63} +8.52951 q^{65} +(-1.41088 - 3.40617i) q^{67} +(4.30205 + 1.78197i) q^{69} +(-9.66157 - 9.66157i) q^{71} +(7.55765 - 7.55765i) q^{73} +(-1.49685 + 3.61373i) q^{75} +(-3.47363 + 1.43882i) q^{77} -17.2176i q^{79} +8.74088i q^{81} +(-11.6602 + 4.82981i) q^{83} +(2.55765 - 6.17471i) q^{85} +(10.8331 - 10.8331i) q^{87} +(5.43882 + 5.43882i) q^{89} +(4.01138 + 1.66157i) q^{91} +(1.10587 + 2.66981i) q^{93} +0.940588 q^{95} +6.15862 q^{97} +(4.71765 + 11.3894i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{3} - 8 q^{5} - 8 q^{7} + 12 q^{11} - 4 q^{19} + 16 q^{21} - 8 q^{23} + 8 q^{25} + 16 q^{27} + 8 q^{29} - 32 q^{31} - 16 q^{33} + 8 q^{35} + 16 q^{37} + 16 q^{39} - 8 q^{41} - 20 q^{43} + 8 q^{45}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/512\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(511\)
\(\chi(n)\) \(e\left(\frac{1}{8}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.943920 2.27882i −0.544972 1.31568i −0.921177 0.389143i \(-0.872771\pi\)
0.376205 0.926536i \(-0.377229\pi\)
\(4\) 0 0
\(5\) −1.70711 0.707107i −0.763441 0.316228i −0.0332288 0.999448i \(-0.510579\pi\)
−0.730213 + 0.683220i \(0.760579\pi\)
\(6\) 0 0
\(7\) −0.665096 0.665096i −0.251383 0.251383i 0.570155 0.821537i \(-0.306883\pi\)
−0.821537 + 0.570155i \(0.806883\pi\)
\(8\) 0 0
\(9\) −2.18073 + 2.18073i −0.726911 + 0.726911i
\(10\) 0 0
\(11\) 1.52971 3.69304i 0.461224 1.11349i −0.506672 0.862139i \(-0.669124\pi\)
0.967895 0.251353i \(-0.0808757\pi\)
\(12\) 0 0
\(13\) −4.26475 + 1.76652i −1.18283 + 0.489944i −0.885414 0.464804i \(-0.846125\pi\)
−0.297416 + 0.954748i \(0.596125\pi\)
\(14\) 0 0
\(15\) 4.55765i 1.17678i
\(16\) 0 0
\(17\) 3.61706i 0.877266i 0.898666 + 0.438633i \(0.144537\pi\)
−0.898666 + 0.438633i \(0.855463\pi\)
\(18\) 0 0
\(19\) −0.470294 + 0.194802i −0.107893 + 0.0446907i −0.435977 0.899958i \(-0.643597\pi\)
0.328084 + 0.944649i \(0.393597\pi\)
\(20\) 0 0
\(21\) −0.887839 + 2.14343i −0.193742 + 0.467736i
\(22\) 0 0
\(23\) −1.33490 + 1.33490i −0.278347 + 0.278347i −0.832449 0.554102i \(-0.813062\pi\)
0.554102 + 0.832449i \(0.313062\pi\)
\(24\) 0 0
\(25\) −1.12132 1.12132i −0.224264 0.224264i
\(26\) 0 0
\(27\) 0.191470 + 0.0793096i 0.0368485 + 0.0152631i
\(28\) 0 0
\(29\) 2.37691 + 5.73838i 0.441382 + 1.06559i 0.975464 + 0.220158i \(0.0706573\pi\)
−0.534082 + 0.845433i \(0.679343\pi\)
\(30\) 0 0
\(31\) −1.17157 −0.210421 −0.105210 0.994450i \(-0.533552\pi\)
−0.105210 + 0.994450i \(0.533552\pi\)
\(32\) 0 0
\(33\) −9.85970 −1.71635
\(34\) 0 0
\(35\) 0.665096 + 1.60568i 0.112422 + 0.271410i
\(36\) 0 0
\(37\) 1.23348 + 0.510925i 0.202783 + 0.0839955i 0.481763 0.876301i \(-0.339996\pi\)
−0.278980 + 0.960297i \(0.589996\pi\)
\(38\) 0 0
\(39\) 8.05117 + 8.05117i 1.28922 + 1.28922i
\(40\) 0 0
\(41\) −1.66981 + 1.66981i −0.260780 + 0.260780i −0.825371 0.564591i \(-0.809034\pi\)
0.564591 + 0.825371i \(0.309034\pi\)
\(42\) 0 0
\(43\) −1.05608 + 2.54960i −0.161051 + 0.388811i −0.983720 0.179710i \(-0.942484\pi\)
0.822669 + 0.568521i \(0.192484\pi\)
\(44\) 0 0
\(45\) 5.26475 2.18073i 0.784823 0.325084i
\(46\) 0 0
\(47\) 1.49824i 0.218540i 0.994012 + 0.109270i \(0.0348513\pi\)
−0.994012 + 0.109270i \(0.965149\pi\)
\(48\) 0 0
\(49\) 6.11529i 0.873614i
\(50\) 0 0
\(51\) 8.24264 3.41421i 1.15420 0.478086i
\(52\) 0 0
\(53\) −1.90329 + 4.59495i −0.261437 + 0.631164i −0.999028 0.0440833i \(-0.985963\pi\)
0.737591 + 0.675248i \(0.235963\pi\)
\(54\) 0 0
\(55\) −5.22274 + 5.22274i −0.704235 + 0.704235i
\(56\) 0 0
\(57\) 0.887839 + 0.887839i 0.117597 + 0.117597i
\(58\) 0 0
\(59\) −4.94392 2.04784i −0.643644 0.266606i 0.0368939 0.999319i \(-0.488254\pi\)
−0.680537 + 0.732713i \(0.738254\pi\)
\(60\) 0 0
\(61\) −5.67897 13.7102i −0.727117 1.75542i −0.651971 0.758244i \(-0.726058\pi\)
−0.0751463 0.997173i \(-0.523942\pi\)
\(62\) 0 0
\(63\) 2.90079 0.365466
\(64\) 0 0
\(65\) 8.52951 1.05796
\(66\) 0 0
\(67\) −1.41088 3.40617i −0.172367 0.416130i 0.813962 0.580918i \(-0.197306\pi\)
−0.986329 + 0.164788i \(0.947306\pi\)
\(68\) 0 0
\(69\) 4.30205 + 1.78197i 0.517906 + 0.214524i
\(70\) 0 0
\(71\) −9.66157 9.66157i −1.14662 1.14662i −0.987214 0.159403i \(-0.949043\pi\)
−0.159403 0.987214i \(-0.550957\pi\)
\(72\) 0 0
\(73\) 7.55765 7.55765i 0.884556 0.884556i −0.109438 0.993994i \(-0.534905\pi\)
0.993994 + 0.109438i \(0.0349051\pi\)
\(74\) 0 0
\(75\) −1.49685 + 3.61373i −0.172842 + 0.417277i
\(76\) 0 0
\(77\) −3.47363 + 1.43882i −0.395856 + 0.163969i
\(78\) 0 0
\(79\) 17.2176i 1.93714i −0.248750 0.968568i \(-0.580020\pi\)
0.248750 0.968568i \(-0.419980\pi\)
\(80\) 0 0
\(81\) 8.74088i 0.971208i
\(82\) 0 0
\(83\) −11.6602 + 4.82981i −1.27987 + 0.530140i −0.915951 0.401290i \(-0.868562\pi\)
−0.363921 + 0.931430i \(0.618562\pi\)
\(84\) 0 0
\(85\) 2.55765 6.17471i 0.277416 0.669741i
\(86\) 0 0
\(87\) 10.8331 10.8331i 1.16143 1.16143i
\(88\) 0 0
\(89\) 5.43882 + 5.43882i 0.576514 + 0.576514i 0.933941 0.357427i \(-0.116346\pi\)
−0.357427 + 0.933941i \(0.616346\pi\)
\(90\) 0 0
\(91\) 4.01138 + 1.66157i 0.420506 + 0.174179i
\(92\) 0 0
\(93\) 1.10587 + 2.66981i 0.114673 + 0.276846i
\(94\) 0 0
\(95\) 0.940588 0.0965023
\(96\) 0 0
\(97\) 6.15862 0.625313 0.312657 0.949866i \(-0.398781\pi\)
0.312657 + 0.949866i \(0.398781\pi\)
\(98\) 0 0
\(99\) 4.71765 + 11.3894i 0.474141 + 1.14468i
\(100\) 0 0
\(101\) −7.47612 3.09671i −0.743902 0.308134i −0.0216512 0.999766i \(-0.506892\pi\)
−0.722251 + 0.691631i \(0.756892\pi\)
\(102\) 0 0
\(103\) −4.72764 4.72764i −0.465828 0.465828i 0.434732 0.900560i \(-0.356843\pi\)
−0.900560 + 0.434732i \(0.856843\pi\)
\(104\) 0 0
\(105\) 3.03127 3.03127i 0.295822 0.295822i
\(106\) 0 0
\(107\) 1.06774 2.57774i 0.103222 0.249200i −0.863828 0.503787i \(-0.831940\pi\)
0.967050 + 0.254587i \(0.0819396\pi\)
\(108\) 0 0
\(109\) 8.35544 3.46094i 0.800306 0.331498i 0.0552270 0.998474i \(-0.482412\pi\)
0.745079 + 0.666976i \(0.232412\pi\)
\(110\) 0 0
\(111\) 3.29316i 0.312573i
\(112\) 0 0
\(113\) 11.7757i 1.10776i −0.832596 0.553881i \(-0.813146\pi\)
0.832596 0.553881i \(-0.186854\pi\)
\(114\) 0 0
\(115\) 3.22274 1.33490i 0.300522 0.124480i
\(116\) 0 0
\(117\) 5.44798 13.1526i 0.503666 1.21596i
\(118\) 0 0
\(119\) 2.40569 2.40569i 0.220529 0.220529i
\(120\) 0 0
\(121\) −3.52035 3.52035i −0.320032 0.320032i
\(122\) 0 0
\(123\) 5.38136 + 2.22903i 0.485221 + 0.200985i
\(124\) 0 0
\(125\) 4.65685 + 11.2426i 0.416522 + 1.00557i
\(126\) 0 0
\(127\) −13.0590 −1.15880 −0.579400 0.815043i \(-0.696713\pi\)
−0.579400 + 0.815043i \(0.696713\pi\)
\(128\) 0 0
\(129\) 6.80695 0.599319
\(130\) 0 0
\(131\) −2.70128 6.52146i −0.236012 0.569783i 0.760851 0.648926i \(-0.224782\pi\)
−0.996863 + 0.0791431i \(0.974782\pi\)
\(132\) 0 0
\(133\) 0.442353 + 0.183228i 0.0383568 + 0.0158879i
\(134\) 0 0
\(135\) −0.270780 0.270780i −0.0233050 0.0233050i
\(136\) 0 0
\(137\) −4.88118 + 4.88118i −0.417027 + 0.417027i −0.884178 0.467151i \(-0.845281\pi\)
0.467151 + 0.884178i \(0.345281\pi\)
\(138\) 0 0
\(139\) −4.88098 + 11.7837i −0.413999 + 0.999482i 0.570054 + 0.821607i \(0.306922\pi\)
−0.984053 + 0.177875i \(0.943078\pi\)
\(140\) 0 0
\(141\) 3.41421 1.41421i 0.287529 0.119098i
\(142\) 0 0
\(143\) 18.4522i 1.54305i
\(144\) 0 0
\(145\) 11.4768i 0.953093i
\(146\) 0 0
\(147\) −13.9357 + 5.77235i −1.14940 + 0.476095i
\(148\) 0 0
\(149\) 2.37691 5.73838i 0.194724 0.470106i −0.796116 0.605144i \(-0.793116\pi\)
0.990840 + 0.135038i \(0.0431155\pi\)
\(150\) 0 0
\(151\) 11.1504 11.1504i 0.907405 0.907405i −0.0886573 0.996062i \(-0.528258\pi\)
0.996062 + 0.0886573i \(0.0282576\pi\)
\(152\) 0 0
\(153\) −7.88784 7.88784i −0.637694 0.637694i
\(154\) 0 0
\(155\) 2.00000 + 0.828427i 0.160644 + 0.0665409i
\(156\) 0 0
\(157\) −0.507395 1.22496i −0.0404945 0.0977624i 0.902338 0.431029i \(-0.141849\pi\)
−0.942833 + 0.333266i \(0.891849\pi\)
\(158\) 0 0
\(159\) 12.2676 0.972886
\(160\) 0 0
\(161\) 1.77568 0.139943
\(162\) 0 0
\(163\) 8.83176 + 21.3218i 0.691757 + 1.67005i 0.741211 + 0.671272i \(0.234252\pi\)
−0.0494542 + 0.998776i \(0.515748\pi\)
\(164\) 0 0
\(165\) 16.8316 + 6.97186i 1.31034 + 0.542759i
\(166\) 0 0
\(167\) 10.8863 + 10.8863i 0.842404 + 0.842404i 0.989171 0.146767i \(-0.0468867\pi\)
−0.146767 + 0.989171i \(0.546887\pi\)
\(168\) 0 0
\(169\) 5.87515 5.87515i 0.451935 0.451935i
\(170\) 0 0
\(171\) 0.600774 1.45040i 0.0459423 0.110915i
\(172\) 0 0
\(173\) 1.77504 0.735246i 0.134954 0.0558997i −0.314184 0.949362i \(-0.601731\pi\)
0.449138 + 0.893462i \(0.351731\pi\)
\(174\) 0 0
\(175\) 1.49157i 0.112752i
\(176\) 0 0
\(177\) 13.1993i 0.992121i
\(178\) 0 0
\(179\) 4.53823 1.87980i 0.339203 0.140503i −0.206578 0.978430i \(-0.566233\pi\)
0.545782 + 0.837928i \(0.316233\pi\)
\(180\) 0 0
\(181\) −0.778175 + 1.87868i −0.0578413 + 0.139641i −0.950158 0.311768i \(-0.899079\pi\)
0.892317 + 0.451410i \(0.149079\pi\)
\(182\) 0 0
\(183\) −25.8827 + 25.8827i −1.91331 + 1.91331i
\(184\) 0 0
\(185\) −1.74441 1.74441i −0.128251 0.128251i
\(186\) 0 0
\(187\) 13.3579 + 5.53304i 0.976829 + 0.404616i
\(188\) 0 0
\(189\) −0.0745976 0.180095i −0.00542618 0.0131000i
\(190\) 0 0
\(191\) 19.4022 1.40389 0.701946 0.712231i \(-0.252315\pi\)
0.701946 + 0.712231i \(0.252315\pi\)
\(192\) 0 0
\(193\) −18.0461 −1.29898 −0.649492 0.760368i \(-0.725018\pi\)
−0.649492 + 0.760368i \(0.725018\pi\)
\(194\) 0 0
\(195\) −8.05117 19.4372i −0.576556 1.39193i
\(196\) 0 0
\(197\) −0.208872 0.0865175i −0.0148815 0.00616412i 0.375230 0.926932i \(-0.377564\pi\)
−0.390112 + 0.920768i \(0.627564\pi\)
\(198\) 0 0
\(199\) −11.8992 11.8992i −0.843513 0.843513i 0.145801 0.989314i \(-0.453424\pi\)
−0.989314 + 0.145801i \(0.953424\pi\)
\(200\) 0 0
\(201\) −6.43030 + 6.43030i −0.453558 + 0.453558i
\(202\) 0 0
\(203\) 2.23570 5.39745i 0.156915 0.378827i
\(204\) 0 0
\(205\) 4.03127 1.66981i 0.281556 0.116624i
\(206\) 0 0
\(207\) 5.82214i 0.404667i
\(208\) 0 0
\(209\) 2.03480i 0.140750i
\(210\) 0 0
\(211\) 9.00647 3.73060i 0.620031 0.256825i −0.0504799 0.998725i \(-0.516075\pi\)
0.670511 + 0.741900i \(0.266075\pi\)
\(212\) 0 0
\(213\) −12.8973 + 31.1367i −0.883706 + 2.13345i
\(214\) 0 0
\(215\) 3.60568 3.60568i 0.245906 0.245906i
\(216\) 0 0
\(217\) 0.779208 + 0.779208i 0.0528961 + 0.0528961i
\(218\) 0 0
\(219\) −24.3564 10.0887i −1.64585 0.681733i
\(220\) 0 0
\(221\) −6.38960 15.4259i −0.429811 1.03766i
\(222\) 0 0
\(223\) −22.6174 −1.51458 −0.757288 0.653081i \(-0.773476\pi\)
−0.757288 + 0.653081i \(0.773476\pi\)
\(224\) 0 0
\(225\) 4.89060 0.326040
\(226\) 0 0
\(227\) −3.94039 9.51294i −0.261533 0.631396i 0.737501 0.675346i \(-0.236006\pi\)
−0.999034 + 0.0439500i \(0.986006\pi\)
\(228\) 0 0
\(229\) −15.7697 6.53200i −1.04209 0.431647i −0.205027 0.978756i \(-0.565728\pi\)
−0.837061 + 0.547109i \(0.815728\pi\)
\(230\) 0 0
\(231\) 6.55765 + 6.55765i 0.431462 + 0.431462i
\(232\) 0 0
\(233\) −10.4486 + 10.4486i −0.684512 + 0.684512i −0.961013 0.276502i \(-0.910825\pi\)
0.276502 + 0.961013i \(0.410825\pi\)
\(234\) 0 0
\(235\) 1.05941 2.55765i 0.0691084 0.166843i
\(236\) 0 0
\(237\) −39.2360 + 16.2521i −2.54865 + 1.05569i
\(238\) 0 0
\(239\) 11.6733i 0.755085i −0.925992 0.377543i \(-0.876769\pi\)
0.925992 0.377543i \(-0.123231\pi\)
\(240\) 0 0
\(241\) 13.8288i 0.890791i 0.895334 + 0.445396i \(0.146937\pi\)
−0.895334 + 0.445396i \(0.853063\pi\)
\(242\) 0 0
\(243\) 20.4933 8.48861i 1.31465 0.544545i
\(244\) 0 0
\(245\) −4.32417 + 10.4395i −0.276261 + 0.666953i
\(246\) 0 0
\(247\) 1.66157 1.66157i 0.105723 0.105723i
\(248\) 0 0
\(249\) 22.0126 + 22.0126i 1.39499 + 1.39499i
\(250\) 0 0
\(251\) −13.0065 5.38745i −0.820961 0.340053i −0.0676429 0.997710i \(-0.521548\pi\)
−0.753318 + 0.657656i \(0.771548\pi\)
\(252\) 0 0
\(253\) 2.88784 + 6.97186i 0.181557 + 0.438317i
\(254\) 0 0
\(255\) −16.4853 −1.03235
\(256\) 0 0
\(257\) −18.9043 −1.17922 −0.589609 0.807689i \(-0.700718\pi\)
−0.589609 + 0.807689i \(0.700718\pi\)
\(258\) 0 0
\(259\) −0.480569 1.16020i −0.0298611 0.0720911i
\(260\) 0 0
\(261\) −17.6973 7.33046i −1.09543 0.453744i
\(262\) 0 0
\(263\) 13.9086 + 13.9086i 0.857643 + 0.857643i 0.991060 0.133417i \(-0.0425948\pi\)
−0.133417 + 0.991060i \(0.542595\pi\)
\(264\) 0 0
\(265\) 6.49824 6.49824i 0.399183 0.399183i
\(266\) 0 0
\(267\) 7.26031 17.5279i 0.444324 1.07269i
\(268\) 0 0
\(269\) 12.1968 5.05209i 0.743653 0.308031i 0.0215042 0.999769i \(-0.493154\pi\)
0.722149 + 0.691737i \(0.243154\pi\)
\(270\) 0 0
\(271\) 4.41512i 0.268199i 0.990968 + 0.134100i \(0.0428142\pi\)
−0.990968 + 0.134100i \(0.957186\pi\)
\(272\) 0 0
\(273\) 10.7096i 0.648175i
\(274\) 0 0
\(275\) −5.85637 + 2.42579i −0.353152 + 0.146280i
\(276\) 0 0
\(277\) 9.54573 23.0454i 0.573547 1.38467i −0.324969 0.945725i \(-0.605354\pi\)
0.898516 0.438941i \(-0.144646\pi\)
\(278\) 0 0
\(279\) 2.55489 2.55489i 0.152957 0.152957i
\(280\) 0 0
\(281\) 5.83509 + 5.83509i 0.348092 + 0.348092i 0.859399 0.511306i \(-0.170838\pi\)
−0.511306 + 0.859399i \(0.670838\pi\)
\(282\) 0 0
\(283\) −3.18656 1.31992i −0.189421 0.0784609i 0.285957 0.958243i \(-0.407689\pi\)
−0.475378 + 0.879782i \(0.657689\pi\)
\(284\) 0 0
\(285\) −0.887839 2.14343i −0.0525911 0.126966i
\(286\) 0 0
\(287\) 2.22117 0.131111
\(288\) 0 0
\(289\) 3.91688 0.230405
\(290\) 0 0
\(291\) −5.81324 14.0344i −0.340778 0.822712i
\(292\) 0 0
\(293\) 6.99307 + 2.89663i 0.408540 + 0.169223i 0.577482 0.816403i \(-0.304035\pi\)
−0.168943 + 0.985626i \(0.554035\pi\)
\(294\) 0 0
\(295\) 6.99176 + 6.99176i 0.407076 + 0.407076i
\(296\) 0 0
\(297\) 0.585786 0.585786i 0.0339908 0.0339908i
\(298\) 0 0
\(299\) 3.33490 8.05117i 0.192862 0.465611i
\(300\) 0 0
\(301\) 2.39813 0.993336i 0.138226 0.0572550i
\(302\) 0 0
\(303\) 19.9598i 1.14666i
\(304\) 0 0
\(305\) 27.4205i 1.57009i
\(306\) 0 0
\(307\) 7.59225 3.14481i 0.433313 0.179484i −0.155356 0.987859i \(-0.549652\pi\)
0.588668 + 0.808375i \(0.299652\pi\)
\(308\) 0 0
\(309\) −6.31095 + 15.2360i −0.359017 + 0.866744i
\(310\) 0 0
\(311\) −15.0543 + 15.0543i −0.853651 + 0.853651i −0.990581 0.136930i \(-0.956277\pi\)
0.136930 + 0.990581i \(0.456277\pi\)
\(312\) 0 0
\(313\) −18.3365 18.3365i −1.03644 1.03644i −0.999311 0.0371274i \(-0.988179\pi\)
−0.0371274 0.999311i \(-0.511821\pi\)
\(314\) 0 0
\(315\) −4.95196 2.05117i −0.279012 0.115570i
\(316\) 0 0
\(317\) 3.94476 + 9.52348i 0.221560 + 0.534892i 0.995102 0.0988523i \(-0.0315171\pi\)
−0.773543 + 0.633744i \(0.781517\pi\)
\(318\) 0 0
\(319\) 24.8280 1.39010
\(320\) 0 0
\(321\) −6.88208 −0.384120
\(322\) 0 0
\(323\) −0.704611 1.70108i −0.0392056 0.0946507i
\(324\) 0 0
\(325\) 6.76299 + 2.80132i 0.375143 + 0.155389i
\(326\) 0 0
\(327\) −15.7737 15.7737i −0.872289 0.872289i
\(328\) 0 0
\(329\) 0.996470 0.996470i 0.0549372 0.0549372i
\(330\) 0 0
\(331\) 3.13734 7.57421i 0.172444 0.416316i −0.813902 0.581002i \(-0.802661\pi\)
0.986346 + 0.164685i \(0.0526609\pi\)
\(332\) 0 0
\(333\) −3.80408 + 1.57570i −0.208462 + 0.0863480i
\(334\) 0 0
\(335\) 6.81234i 0.372198i
\(336\) 0 0
\(337\) 16.8910i 0.920110i −0.887890 0.460055i \(-0.847830\pi\)
0.887890 0.460055i \(-0.152170\pi\)
\(338\) 0 0
\(339\) −26.8347 + 11.1153i −1.45746 + 0.603700i
\(340\) 0 0
\(341\) −1.79216 + 4.32666i −0.0970510 + 0.234302i
\(342\) 0 0
\(343\) −8.72293 + 8.72293i −0.470994 + 0.470994i
\(344\) 0 0
\(345\) −6.08402 6.08402i −0.327553 0.327553i
\(346\) 0 0
\(347\) 28.1455 + 11.6582i 1.51093 + 0.625847i 0.975749 0.218892i \(-0.0702442\pi\)
0.535179 + 0.844739i \(0.320244\pi\)
\(348\) 0 0
\(349\) −4.13818 9.99044i −0.221512 0.534776i 0.773584 0.633694i \(-0.218462\pi\)
−0.995096 + 0.0989174i \(0.968462\pi\)
\(350\) 0 0
\(351\) −0.956675 −0.0510636
\(352\) 0 0
\(353\) 0.673711 0.0358580 0.0179290 0.999839i \(-0.494293\pi\)
0.0179290 + 0.999839i \(0.494293\pi\)
\(354\) 0 0
\(355\) 9.66157 + 23.3251i 0.512783 + 1.23797i
\(356\) 0 0
\(357\) −7.75293 3.21137i −0.410328 0.169964i
\(358\) 0 0
\(359\) 3.92568 + 3.92568i 0.207190 + 0.207190i 0.803072 0.595882i \(-0.203198\pi\)
−0.595882 + 0.803072i \(0.703198\pi\)
\(360\) 0 0
\(361\) −13.2518 + 13.2518i −0.697463 + 0.697463i
\(362\) 0 0
\(363\) −4.69933 + 11.3452i −0.246651 + 0.595467i
\(364\) 0 0
\(365\) −18.2458 + 7.55765i −0.955027 + 0.395585i
\(366\) 0 0
\(367\) 16.4759i 0.860033i 0.902821 + 0.430016i \(0.141492\pi\)
−0.902821 + 0.430016i \(0.858508\pi\)
\(368\) 0 0
\(369\) 7.28281i 0.379128i
\(370\) 0 0
\(371\) 4.32195 1.79021i 0.224384 0.0929431i
\(372\) 0 0
\(373\) 5.25180 12.6790i 0.271928 0.656492i −0.727638 0.685962i \(-0.759382\pi\)
0.999566 + 0.0294695i \(0.00938180\pi\)
\(374\) 0 0
\(375\) 21.2243 21.2243i 1.09602 1.09602i
\(376\) 0 0
\(377\) −20.2739 20.2739i −1.04416 1.04416i
\(378\) 0 0
\(379\) 12.2339 + 5.06746i 0.628414 + 0.260298i 0.674079 0.738659i \(-0.264541\pi\)
−0.0456649 + 0.998957i \(0.514541\pi\)
\(380\) 0 0
\(381\) 12.3267 + 29.7592i 0.631514 + 1.52461i
\(382\) 0 0
\(383\) −14.5667 −0.744322 −0.372161 0.928168i \(-0.621383\pi\)
−0.372161 + 0.928168i \(0.621383\pi\)
\(384\) 0 0
\(385\) 6.94725 0.354065
\(386\) 0 0
\(387\) −3.25697 7.86303i −0.165561 0.399700i
\(388\) 0 0
\(389\) 34.4739 + 14.2795i 1.74789 + 0.724002i 0.998052 + 0.0623850i \(0.0198707\pi\)
0.749842 + 0.661617i \(0.230129\pi\)
\(390\) 0 0
\(391\) −4.82843 4.82843i −0.244184 0.244184i
\(392\) 0 0
\(393\) −12.3115 + 12.3115i −0.621032 + 0.621032i
\(394\) 0 0
\(395\) −12.1747 + 29.3923i −0.612576 + 1.47889i
\(396\) 0 0
\(397\) 21.4480 8.88405i 1.07644 0.445877i 0.227183 0.973852i \(-0.427048\pi\)
0.849260 + 0.527975i \(0.177048\pi\)
\(398\) 0 0
\(399\) 1.18100i 0.0591238i
\(400\) 0 0
\(401\) 2.51509i 0.125598i −0.998026 0.0627989i \(-0.979997\pi\)
0.998026 0.0627989i \(-0.0200027\pi\)
\(402\) 0 0
\(403\) 4.99647 2.06961i 0.248892 0.103094i
\(404\) 0 0
\(405\) 6.18073 14.9216i 0.307123 0.741461i
\(406\) 0 0
\(407\) 3.77373 3.77373i 0.187057 0.187057i
\(408\) 0 0
\(409\) 5.32666 + 5.32666i 0.263386 + 0.263386i 0.826428 0.563042i \(-0.190369\pi\)
−0.563042 + 0.826428i \(0.690369\pi\)
\(410\) 0 0
\(411\) 15.7308 + 6.51590i 0.775942 + 0.321406i
\(412\) 0 0
\(413\) 1.92617 + 4.65019i 0.0947807 + 0.228821i
\(414\) 0 0
\(415\) 23.3204 1.14475
\(416\) 0 0
\(417\) 31.4603 1.54062
\(418\) 0 0
\(419\) 4.37032 + 10.5509i 0.213504 + 0.515444i 0.993957 0.109770i \(-0.0350115\pi\)
−0.780453 + 0.625214i \(0.785012\pi\)
\(420\) 0 0
\(421\) 4.16464 + 1.72505i 0.202972 + 0.0840739i 0.481854 0.876252i \(-0.339964\pi\)
−0.278881 + 0.960326i \(0.589964\pi\)
\(422\) 0 0
\(423\) −3.26725 3.26725i −0.158859 0.158859i
\(424\) 0 0
\(425\) 4.05588 4.05588i 0.196739 0.196739i
\(426\) 0 0
\(427\) −5.34157 + 12.8957i −0.258497 + 0.624066i
\(428\) 0 0
\(429\) 42.0492 17.4173i 2.03015 0.840917i
\(430\) 0 0
\(431\) 16.9800i 0.817897i −0.912557 0.408949i \(-0.865896\pi\)
0.912557 0.408949i \(-0.134104\pi\)
\(432\) 0 0
\(433\) 16.9567i 0.814886i −0.913231 0.407443i \(-0.866421\pi\)
0.913231 0.407443i \(-0.133579\pi\)
\(434\) 0 0
\(435\) −26.1535 + 10.8331i −1.25396 + 0.519409i
\(436\) 0 0
\(437\) 0.367755 0.887839i 0.0175921 0.0424711i
\(438\) 0 0
\(439\) 10.5596 10.5596i 0.503982 0.503982i −0.408691 0.912673i \(-0.634015\pi\)
0.912673 + 0.408691i \(0.134015\pi\)
\(440\) 0 0
\(441\) 13.3358 + 13.3358i 0.635039 + 0.635039i
\(442\) 0 0
\(443\) −15.2358 6.31087i −0.723874 0.299838i −0.00984190 0.999952i \(-0.503133\pi\)
−0.714032 + 0.700113i \(0.753133\pi\)
\(444\) 0 0
\(445\) −5.43882 13.1305i −0.257825 0.622444i
\(446\) 0 0
\(447\) −15.3204 −0.724629
\(448\) 0 0
\(449\) 8.07197 0.380940 0.190470 0.981693i \(-0.438999\pi\)
0.190470 + 0.981693i \(0.438999\pi\)
\(450\) 0 0
\(451\) 3.61235 + 8.72098i 0.170099 + 0.410655i
\(452\) 0 0
\(453\) −35.9348 14.8847i −1.68836 0.699343i
\(454\) 0 0
\(455\) −5.67294 5.67294i −0.265952 0.265952i
\(456\) 0 0
\(457\) 7.68314 7.68314i 0.359402 0.359402i −0.504191 0.863592i \(-0.668209\pi\)
0.863592 + 0.504191i \(0.168209\pi\)
\(458\) 0 0
\(459\) −0.286867 + 0.692559i −0.0133898 + 0.0323259i
\(460\) 0 0
\(461\) −14.2487 + 5.90199i −0.663627 + 0.274883i −0.688964 0.724796i \(-0.741934\pi\)
0.0253371 + 0.999679i \(0.491934\pi\)
\(462\) 0 0
\(463\) 27.3231i 1.26981i −0.772589 0.634907i \(-0.781038\pi\)
0.772589 0.634907i \(-0.218962\pi\)
\(464\) 0 0
\(465\) 5.33962i 0.247619i
\(466\) 0 0
\(467\) 22.7075 9.40577i 1.05078 0.435247i 0.210610 0.977570i \(-0.432455\pi\)
0.840170 + 0.542323i \(0.182455\pi\)
\(468\) 0 0
\(469\) −1.32706 + 3.20380i −0.0612779 + 0.147938i
\(470\) 0 0
\(471\) −2.31253 + 2.31253i −0.106556 + 0.106556i
\(472\) 0 0
\(473\) 7.80029 + 7.80029i 0.358658 + 0.358658i
\(474\) 0 0
\(475\) 0.745786 + 0.308915i 0.0342190 + 0.0141740i
\(476\) 0 0
\(477\) −5.86978 14.1709i −0.268759 0.648842i
\(478\) 0 0
\(479\) −3.91155 −0.178723 −0.0893616 0.995999i \(-0.528483\pi\)
−0.0893616 + 0.995999i \(0.528483\pi\)
\(480\) 0 0
\(481\) −6.16305 −0.281011
\(482\) 0 0
\(483\) −1.67610 4.04646i −0.0762651 0.184120i
\(484\) 0 0
\(485\) −10.5134 4.35480i −0.477390 0.197741i
\(486\) 0 0
\(487\) −8.14685 8.14685i −0.369169 0.369169i 0.498005 0.867174i \(-0.334066\pi\)
−0.867174 + 0.498005i \(0.834066\pi\)
\(488\) 0 0
\(489\) 40.2520 40.2520i 1.82026 1.82026i
\(490\) 0 0
\(491\) 4.67590 11.2886i 0.211020 0.509448i −0.782560 0.622575i \(-0.786087\pi\)
0.993581 + 0.113127i \(0.0360866\pi\)
\(492\) 0 0
\(493\) −20.7561 + 8.59744i −0.934806 + 0.387209i
\(494\) 0 0
\(495\) 22.7788i 1.02383i
\(496\) 0 0
\(497\) 12.8517i 0.576479i
\(498\) 0 0
\(499\) −29.9533 + 12.4071i −1.34089 + 0.555417i −0.933743 0.357944i \(-0.883478\pi\)
−0.407152 + 0.913361i \(0.633478\pi\)
\(500\) 0 0
\(501\) 14.5321 35.0836i 0.649247 1.56742i
\(502\) 0 0
\(503\) 8.77059 8.77059i 0.391061 0.391061i −0.484004 0.875066i \(-0.660818\pi\)
0.875066 + 0.484004i \(0.160818\pi\)
\(504\) 0 0
\(505\) 10.5728 + 10.5728i 0.470485 + 0.470485i
\(506\) 0 0
\(507\) −18.9341 7.84276i −0.840893 0.348309i
\(508\) 0 0
\(509\) −8.32546 20.0994i −0.369020 0.890892i −0.993912 0.110181i \(-0.964857\pi\)
0.624892 0.780711i \(-0.285143\pi\)
\(510\) 0 0
\(511\) −10.0531 −0.444724
\(512\) 0 0
\(513\) −0.105497 −0.00465780
\(514\) 0 0
\(515\) 4.72764 + 11.4135i 0.208325 + 0.502941i
\(516\) 0 0
\(517\) 5.53304 + 2.29186i 0.243343 + 0.100796i
\(518\) 0 0
\(519\) −3.35099 3.35099i −0.147092 0.147092i
\(520\) 0 0
\(521\) 29.8910 29.8910i 1.30955 1.30955i 0.387807 0.921741i \(-0.373233\pi\)
0.921741 0.387807i \(-0.126767\pi\)
\(522\) 0 0
\(523\) 13.5719 32.7654i 0.593456 1.43273i −0.286688 0.958024i \(-0.592554\pi\)
0.880144 0.474706i \(-0.157446\pi\)
\(524\) 0 0
\(525\) 3.39903 1.40792i 0.148346 0.0614468i
\(526\) 0 0
\(527\) 4.23765i 0.184595i
\(528\) 0 0
\(529\) 19.4361i 0.845046i
\(530\) 0 0
\(531\) 15.2472 6.31558i 0.661670 0.274073i
\(532\) 0 0
\(533\) 4.17157 10.0711i 0.180691 0.436226i
\(534\) 0 0
\(535\) −3.64548 + 3.64548i −0.157608 + 0.157608i
\(536\) 0 0
\(537\) −8.56744 8.56744i −0.369713 0.369713i
\(538\) 0 0
\(539\) −22.5840 9.35460i −0.972762 0.402931i
\(540\) 0 0
\(541\) 4.67751 + 11.2925i 0.201102 + 0.485502i 0.991968 0.126486i \(-0.0403699\pi\)
−0.790867 + 0.611988i \(0.790370\pi\)
\(542\) 0 0
\(543\) 5.01571 0.215245
\(544\) 0 0
\(545\) −16.7109 −0.715815
\(546\) 0 0
\(547\) −7.92207 19.1256i −0.338723 0.817750i −0.997839 0.0657087i \(-0.979069\pi\)
0.659116 0.752042i \(-0.270931\pi\)
\(548\) 0 0
\(549\) 42.2827 + 17.5141i 1.80458 + 0.747482i
\(550\) 0 0
\(551\) −2.23570 2.23570i −0.0952439 0.0952439i
\(552\) 0 0
\(553\) −11.4514 + 11.4514i −0.486962 + 0.486962i
\(554\) 0 0
\(555\) −2.32861 + 5.62177i −0.0988442 + 0.238631i
\(556\) 0 0
\(557\) 29.8439 12.3617i 1.26452 0.523783i 0.353229 0.935537i \(-0.385084\pi\)
0.911295 + 0.411753i \(0.135084\pi\)
\(558\) 0 0
\(559\) 12.7390i 0.538803i
\(560\) 0 0
\(561\) 35.6631i 1.50570i
\(562\) 0 0
\(563\) 25.4797 10.5540i 1.07384 0.444800i 0.225497 0.974244i \(-0.427600\pi\)
0.848345 + 0.529444i \(0.177600\pi\)
\(564\) 0 0
\(565\) −8.32666 + 20.1023i −0.350305 + 0.845712i
\(566\) 0 0
\(567\) 5.81352 5.81352i 0.244145 0.244145i
\(568\) 0 0
\(569\) 23.7855 + 23.7855i 0.997139 + 0.997139i 0.999996 0.00285688i \(-0.000909375\pi\)
−0.00285688 + 0.999996i \(0.500909\pi\)
\(570\) 0 0
\(571\) 2.18343 + 0.904405i 0.0913736 + 0.0378482i 0.427902 0.903825i \(-0.359253\pi\)
−0.336528 + 0.941673i \(0.609253\pi\)
\(572\) 0 0
\(573\) −18.3141 44.2141i −0.765082 1.84707i
\(574\) 0 0
\(575\) 2.99371 0.124846
\(576\) 0 0
\(577\) 24.8839 1.03593 0.517965 0.855402i \(-0.326690\pi\)
0.517965 + 0.855402i \(0.326690\pi\)
\(578\) 0 0
\(579\) 17.0340 + 41.1238i 0.707910 + 1.70905i
\(580\) 0 0
\(581\) 10.9674 + 4.54286i 0.455006 + 0.188469i
\(582\) 0 0
\(583\) 14.0578 + 14.0578i 0.582216 + 0.582216i
\(584\) 0 0
\(585\) −18.6006 + 18.6006i −0.769039 + 0.769039i
\(586\) 0 0
\(587\) −16.6383 + 40.1685i −0.686738 + 1.65793i 0.0645151 + 0.997917i \(0.479450\pi\)
−0.751253 + 0.660015i \(0.770550\pi\)
\(588\) 0 0
\(589\) 0.550984 0.228225i 0.0227029 0.00940384i
\(590\) 0 0
\(591\) 0.557647i 0.0229385i
\(592\) 0 0
\(593\) 9.10197i 0.373773i 0.982382 + 0.186886i \(0.0598397\pi\)
−0.982382 + 0.186886i \(0.940160\pi\)
\(594\) 0 0
\(595\) −5.80785 + 2.40569i −0.238099 + 0.0986238i
\(596\) 0 0
\(597\) −15.8843 + 38.3481i −0.650102 + 1.56948i
\(598\) 0 0
\(599\) 3.04488 3.04488i 0.124410 0.124410i −0.642160 0.766571i \(-0.721962\pi\)
0.766571 + 0.642160i \(0.221962\pi\)
\(600\) 0 0
\(601\) −9.53880 9.53880i −0.389096 0.389096i 0.485269 0.874365i \(-0.338722\pi\)
−0.874365 + 0.485269i \(0.838722\pi\)
\(602\) 0 0
\(603\) 10.5047 + 4.35119i 0.427784 + 0.177194i
\(604\) 0 0
\(605\) 3.52035 + 8.49887i 0.143123 + 0.345528i
\(606\) 0 0
\(607\) 3.66391 0.148714 0.0743568 0.997232i \(-0.476310\pi\)
0.0743568 + 0.997232i \(0.476310\pi\)
\(608\) 0 0
\(609\) −14.4102 −0.583929
\(610\) 0 0
\(611\) −2.64666 6.38960i −0.107072 0.258496i
\(612\) 0 0
\(613\) −28.0079 11.6012i −1.13123 0.468570i −0.263029 0.964788i \(-0.584722\pi\)
−0.868198 + 0.496218i \(0.834722\pi\)
\(614\) 0 0
\(615\) −7.61040 7.61040i −0.306881 0.306881i
\(616\) 0 0
\(617\) −5.86100 + 5.86100i −0.235955 + 0.235955i −0.815173 0.579218i \(-0.803358\pi\)
0.579218 + 0.815173i \(0.303358\pi\)
\(618\) 0 0
\(619\) −15.2917 + 36.9173i −0.614624 + 1.48383i 0.243245 + 0.969965i \(0.421788\pi\)
−0.857869 + 0.513868i \(0.828212\pi\)
\(620\) 0 0
\(621\) −0.361465 + 0.149724i −0.0145051 + 0.00600821i
\(622\) 0 0
\(623\) 7.23468i 0.289851i
\(624\) 0 0
\(625\) 14.5563i 0.582254i
\(626\) 0 0
\(627\) 4.63696 1.92069i 0.185182 0.0767050i
\(628\) 0 0
\(629\) −1.84804 + 4.46157i −0.0736864 + 0.177895i
\(630\) 0 0
\(631\) −21.0543 + 21.0543i −0.838159 + 0.838159i −0.988616 0.150458i \(-0.951925\pi\)
0.150458 + 0.988616i \(0.451925\pi\)
\(632\) 0 0
\(633\) −17.0028 17.0028i −0.675799 0.675799i
\(634\) 0 0
\(635\) 22.2931 + 9.23412i 0.884676 + 0.366445i
\(636\) 0 0
\(637\) 10.8028 + 26.0802i 0.428022 + 1.03334i
\(638\) 0 0
\(639\) 42.1386 1.66698
\(640\) 0 0
\(641\) −6.57429 −0.259669 −0.129835 0.991536i \(-0.541445\pi\)
−0.129835 + 0.991536i \(0.541445\pi\)
\(642\) 0 0
\(643\) −9.98462 24.1050i −0.393755 0.950608i −0.989114 0.147149i \(-0.952990\pi\)
0.595360 0.803459i \(-0.297010\pi\)
\(644\) 0 0
\(645\) −11.6202 4.81324i −0.457545 0.189521i
\(646\) 0 0
\(647\) 19.1598 + 19.1598i 0.753250 + 0.753250i 0.975084 0.221835i \(-0.0712046\pi\)
−0.221835 + 0.975084i \(0.571205\pi\)
\(648\) 0 0
\(649\) −15.1255 + 15.1255i −0.593727 + 0.593727i
\(650\) 0 0
\(651\) 1.04017 2.51119i 0.0407674 0.0984212i
\(652\) 0 0
\(653\) −13.8416 + 5.73339i −0.541665 + 0.224365i −0.636703 0.771109i \(-0.719702\pi\)
0.0950389 + 0.995474i \(0.469702\pi\)
\(654\) 0 0
\(655\) 13.0429i 0.509629i
\(656\) 0 0
\(657\) 32.9624i 1.28599i
\(658\) 0 0
\(659\) 0.489009 0.202554i 0.0190491 0.00789039i −0.373139 0.927776i \(-0.621718\pi\)
0.392188 + 0.919885i \(0.371718\pi\)
\(660\) 0 0
\(661\) −2.67268 + 6.45241i −0.103955 + 0.250970i −0.967295 0.253652i \(-0.918368\pi\)
0.863340 + 0.504622i \(0.168368\pi\)
\(662\) 0 0
\(663\) −29.1216 + 29.1216i −1.13099 + 1.13099i
\(664\) 0 0
\(665\) −0.625581 0.625581i −0.0242590 0.0242590i
\(666\) 0 0
\(667\) −10.8331 4.48723i −0.419461 0.173746i
\(668\) 0 0
\(669\) 21.3490 + 51.5411i 0.825402 + 1.99270i
\(670\) 0 0
\(671\) −59.3196 −2.29001
\(672\) 0 0
\(673\) −24.3285 −0.937793 −0.468897 0.883253i \(-0.655348\pi\)
−0.468897 + 0.883253i \(0.655348\pi\)
\(674\) 0 0
\(675\) −0.125768 0.303631i −0.00484081 0.0116868i
\(676\) 0 0
\(677\) 3.88054 + 1.60737i 0.149141 + 0.0617763i 0.456005 0.889977i \(-0.349280\pi\)
−0.306864 + 0.951753i \(0.599280\pi\)
\(678\) 0 0
\(679\) −4.09607 4.09607i −0.157193 0.157193i
\(680\) 0 0
\(681\) −17.9589 + 17.9589i −0.688187 + 0.688187i
\(682\) 0 0
\(683\) 10.2780 24.8133i 0.393277 0.949455i −0.595944 0.803026i \(-0.703222\pi\)
0.989221 0.146429i \(-0.0467781\pi\)
\(684\) 0 0
\(685\) 11.7842 4.88118i 0.450251 0.186500i
\(686\) 0 0
\(687\) 42.1019i 1.60629i
\(688\) 0 0
\(689\) 22.9585i 0.874650i
\(690\) 0 0
\(691\) −20.6870 + 8.56885i −0.786972 + 0.325974i −0.739725 0.672909i \(-0.765045\pi\)
−0.0472463 + 0.998883i \(0.515045\pi\)
\(692\) 0 0
\(693\) 4.43736 10.7127i 0.168561 0.406943i
\(694\) 0 0
\(695\) 16.6647 16.6647i 0.632128 0.632128i
\(696\) 0 0
\(697\) −6.03979 6.03979i −0.228774 0.228774i
\(698\) 0 0
\(699\) 33.6732 + 13.9479i 1.27364 + 0.527558i
\(700\) 0 0
\(701\) −11.6625 28.1557i −0.440486 1.06343i −0.975779 0.218760i \(-0.929799\pi\)
0.535293 0.844667i \(-0.320201\pi\)
\(702\) 0 0
\(703\) −0.679628 −0.0256326
\(704\) 0 0
\(705\) −6.82843 −0.257173
\(706\) 0 0
\(707\) 2.91273 + 7.03195i 0.109544 + 0.264464i
\(708\) 0 0
\(709\) 30.0346 + 12.4408i 1.12797 + 0.467223i 0.867092 0.498148i \(-0.165986\pi\)
0.260883 + 0.965370i \(0.415986\pi\)
\(710\) 0 0
\(711\) 37.5471 + 37.5471i 1.40812 + 1.40812i
\(712\) 0 0
\(713\) 1.56394 1.56394i 0.0585699 0.0585699i
\(714\) 0 0
\(715\) 13.0476 31.4998i 0.487954 1.17803i
\(716\) 0 0
\(717\) −26.6015 + 11.0187i −0.993450 + 0.411501i
\(718\) 0 0
\(719\) 33.6333i 1.25431i 0.778894 + 0.627155i \(0.215781\pi\)
−0.778894 + 0.627155i \(0.784219\pi\)
\(720\) 0 0
\(721\) 6.28867i 0.234202i
\(722\) 0 0
\(723\) 31.5134 13.0533i 1.17200 0.485457i
\(724\) 0 0
\(725\) 3.76928 9.09984i 0.139988 0.337960i
\(726\) 0 0
\(727\) −7.43334 + 7.43334i −0.275687 + 0.275687i −0.831385 0.555697i \(-0.812451\pi\)
0.555697 + 0.831385i \(0.312451\pi\)
\(728\) 0 0
\(729\) −20.1459 20.1459i −0.746145 0.746145i
\(730\) 0 0
\(731\) −9.22207 3.81991i −0.341090 0.141284i
\(732\) 0 0
\(733\) 0.136110 + 0.328598i 0.00502733 + 0.0121371i 0.926373 0.376607i \(-0.122909\pi\)
−0.921346 + 0.388744i \(0.872909\pi\)
\(734\) 0 0
\(735\) 27.8714 1.02805
\(736\) 0 0
\(737\) −14.7373 −0.542857
\(738\) 0 0
\(739\) −18.1780 43.8857i −0.668690 1.61436i −0.783804 0.621008i \(-0.786723\pi\)
0.115114 0.993352i \(-0.463277\pi\)
\(740\) 0 0
\(741\) −5.35480 2.21803i −0.196714 0.0814814i
\(742\) 0 0
\(743\) −30.3220 30.3220i −1.11240 1.11240i −0.992825 0.119580i \(-0.961845\pi\)
−0.119580 0.992825i \(-0.538155\pi\)
\(744\) 0 0
\(745\) −8.11529 + 8.11529i −0.297321 + 0.297321i
\(746\) 0 0
\(747\) 14.8952 35.9603i 0.544988 1.31572i
\(748\) 0 0
\(749\) −2.42459 + 1.00430i −0.0885927 + 0.0366963i
\(750\) 0 0
\(751\) 51.3686i 1.87447i 0.348701 + 0.937234i \(0.386623\pi\)
−0.348701 + 0.937234i \(0.613377\pi\)
\(752\) 0 0
\(753\) 34.7248i 1.26544i
\(754\) 0 0
\(755\) −26.9194 + 11.1504i −0.979697 + 0.405804i
\(756\) 0 0
\(757\) −6.32270 + 15.2644i −0.229803 + 0.554793i −0.996153 0.0876302i \(-0.972071\pi\)
0.766350 + 0.642423i \(0.222071\pi\)
\(758\) 0 0
\(759\) 13.1618 13.1618i 0.477741 0.477741i
\(760\) 0 0
\(761\) −26.6859 26.6859i −0.967362 0.967362i 0.0321218 0.999484i \(-0.489774\pi\)
−0.999484 + 0.0321218i \(0.989774\pi\)
\(762\) 0 0
\(763\) −7.85902 3.25531i −0.284516 0.117850i
\(764\) 0 0
\(765\) 7.88784 + 19.0429i 0.285185 + 0.688499i
\(766\) 0 0
\(767\) 24.7021 0.891943
\(768\) 0 0
\(769\) 44.0390 1.58809 0.794044 0.607861i \(-0.207972\pi\)
0.794044 + 0.607861i \(0.207972\pi\)
\(770\) 0 0
\(771\) 17.8441 + 43.0796i 0.642641 + 1.55147i
\(772\) 0 0
\(773\) −37.1790 15.4001i −1.33724 0.553902i −0.404526 0.914526i \(-0.632564\pi\)
−0.932711 + 0.360625i \(0.882564\pi\)
\(774\) 0 0
\(775\) 1.31371 + 1.31371i 0.0471898 + 0.0471898i
\(776\) 0 0
\(777\) −2.19027 + 2.19027i −0.0785754 + 0.0785754i
\(778\) 0 0
\(779\) 0.460018 1.11058i 0.0164819 0.0397908i
\(780\) 0 0
\(781\) −50.4599 + 20.9012i −1.80560 + 0.747903i
\(782\) 0 0
\(783\) 1.28724i 0.0460022i
\(784\) 0 0
\(785\) 2.44992i 0.0874413i
\(786\) 0 0
\(787\) −2.29020 + 0.948632i −0.0816368 + 0.0338151i −0.423128 0.906070i \(-0.639068\pi\)
0.341491 + 0.939885i \(0.389068\pi\)
\(788\) 0 0
\(789\) 18.5667 44.8240i 0.660992 1.59578i
\(790\) 0 0
\(791\) −7.83196 + 7.83196i −0.278472 + 0.278472i
\(792\) 0 0
\(793\) 48.4388 + 48.4388i 1.72011 + 1.72011i
\(794\) 0 0
\(795\) −20.9421 8.67452i −0.742741 0.307654i
\(796\) 0 0
\(797\) 1.14556 + 2.76562i 0.0405777 + 0.0979632i 0.942869 0.333164i \(-0.108116\pi\)
−0.902291 + 0.431127i \(0.858116\pi\)
\(798\) 0 0
\(799\) −5.41921 −0.191718
\(800\) 0 0
\(801\) −23.7212 −0.838149
\(802\) 0 0
\(803\) −16.3497 39.4717i −0.576968 1.39292i
\(804\) 0 0
\(805\) −3.03127 1.25559i −0.106838 0.0442539i
\(806\) 0 0
\(807\) −23.0256 23.0256i −0.810541 0.810541i
\(808\) 0 0
\(809\) 7.12825 7.12825i 0.250616 0.250616i −0.570607 0.821223i \(-0.693292\pi\)
0.821223 + 0.570607i \(0.193292\pi\)
\(810\) 0 0
\(811\) 11.3805 27.4750i 0.399624 0.964777i −0.588131 0.808765i \(-0.700136\pi\)
0.987755 0.156012i \(-0.0498638\pi\)
\(812\) 0 0
\(813\) 10.0613 4.16751i 0.352864 0.146161i
\(814\) 0 0
\(815\) 42.6435i 1.49374i
\(816\) 0 0
\(817\) 1.40479i 0.0491474i
\(818\) 0 0
\(819\) −12.3712 + 5.12431i −0.432284 + 0.179058i
\(820\) 0 0
\(821\) −14.1603 + 34.1861i −0.494199 + 1.19310i 0.458364 + 0.888764i \(0.348435\pi\)
−0.952564 + 0.304339i \(0.901565\pi\)
\(822\) 0 0
\(823\) 27.3810 27.3810i 0.954440 0.954440i −0.0445659 0.999006i \(-0.514190\pi\)
0.999006 + 0.0445659i \(0.0141905\pi\)
\(824\) 0 0
\(825\) 11.0559 + 11.0559i 0.384916 + 0.384916i
\(826\) 0 0
\(827\) −19.2661 7.98030i −0.669950 0.277502i 0.0216689 0.999765i \(-0.493102\pi\)
−0.691619 + 0.722263i \(0.743102\pi\)
\(828\) 0 0
\(829\) 1.48945 + 3.59585i 0.0517307 + 0.124889i 0.947632 0.319364i \(-0.103469\pi\)
−0.895901 + 0.444253i \(0.853469\pi\)
\(830\) 0 0
\(831\) −61.5269 −2.13434
\(832\) 0 0
\(833\) 22.1194 0.766391
\(834\) 0 0
\(835\) −10.8863 26.2818i −0.376735 0.909518i
\(836\) 0 0
\(837\) −0.224321 0.0929169i −0.00775368 0.00321168i
\(838\) 0 0
\(839\) 13.8461 + 13.8461i 0.478020 + 0.478020i 0.904498 0.426478i \(-0.140246\pi\)
−0.426478 + 0.904498i \(0.640246\pi\)
\(840\) 0 0
\(841\) −6.77318 + 6.77318i −0.233558 + 0.233558i
\(842\) 0 0
\(843\) 7.78929 18.8050i 0.268277 0.647679i
\(844\) 0 0
\(845\) −14.1839 + 5.87515i −0.487940 + 0.202111i
\(846\) 0 0
\(847\) 4.68274i 0.160901i
\(848\) 0 0
\(849\) 8.50750i 0.291977i
\(850\) 0 0
\(851\) −2.32861 + 0.964543i −0.0798239 + 0.0330641i
\(852\) 0 0
\(853\) −7.48055 + 18.0597i −0.256129 + 0.618351i −0.998676 0.0514436i \(-0.983618\pi\)
0.742547 + 0.669794i \(0.233618\pi\)
\(854\) 0 0
\(855\) −2.05117 + 2.05117i −0.0701485 + 0.0701485i
\(856\) 0 0
\(857\) 6.35294 + 6.35294i 0.217012 + 0.217012i 0.807238 0.590226i \(-0.200961\pi\)
−0.590226 + 0.807238i \(0.700961\pi\)
\(858\) 0 0
\(859\) −23.4855 9.72800i −0.801314 0.331915i −0.0558315 0.998440i \(-0.517781\pi\)
−0.745483 + 0.666525i \(0.767781\pi\)
\(860\) 0 0
\(861\) −2.09660 5.06164i −0.0714520 0.172500i
\(862\) 0 0
\(863\) 0.0884535 0.00301099 0.00150550 0.999999i \(-0.499521\pi\)
0.00150550 + 0.999999i \(0.499521\pi\)
\(864\) 0 0
\(865\) −3.55008 −0.120706
\(866\) 0 0
\(867\) −3.69722 8.92588i −0.125564 0.303139i
\(868\) 0 0
\(869\) −63.5854 26.3379i −2.15699 0.893453i
\(870\) 0 0
\(871\) 12.0341 + 12.0341i 0.407761 + 0.407761i
\(872\) 0 0
\(873\) −13.4303 + 13.4303i −0.454547 + 0.454547i
\(874\) 0 0
\(875\) 4.38018 10.5747i 0.148077 0.357490i
\(876\) 0 0
\(877\) −10.2487 + 4.24514i −0.346073 + 0.143348i −0.548948 0.835857i \(-0.684971\pi\)
0.202875 + 0.979205i \(0.434971\pi\)
\(878\) 0 0
\(879\) 18.6702i 0.629729i
\(880\) 0 0
\(881\) 23.9859i 0.808105i −0.914736 0.404052i \(-0.867601\pi\)
0.914736 0.404052i \(-0.132399\pi\)
\(882\) 0 0
\(883\) 18.7075 7.74892i 0.629559 0.260772i −0.0450067 0.998987i \(-0.514331\pi\)
0.674566 + 0.738215i \(0.264331\pi\)
\(884\) 0 0
\(885\) 9.33333 22.5326i 0.313736 0.757426i
\(886\) 0 0
\(887\) −36.4494 + 36.4494i −1.22385 + 1.22385i −0.257600 + 0.966252i \(0.582932\pi\)
−0.966252 + 0.257600i \(0.917068\pi\)
\(888\) 0 0
\(889\) 8.68550 + 8.68550i 0.291302 + 0.291302i
\(890\) 0 0
\(891\) 32.2804 + 13.3710i 1.08143 + 0.447944i
\(892\) 0 0
\(893\) −0.291859 0.704611i −0.00976670 0.0235789i
\(894\) 0 0
\(895\) −9.07646 −0.303392
\(896\) 0 0
\(897\) −21.4951 −0.717700
\(898\) 0 0
\(899\) −2.78473 6.72293i −0.0928759 0.224222i
\(900\) 0 0
\(901\) −16.6202 6.88431i −0.553699 0.229350i
\(902\) 0 0
\(903\) −4.52728 4.52728i −0.150658 0.150658i
\(904\) 0 0
\(905\) 2.65685 2.65685i 0.0883168 0.0883168i
\(906\) 0 0
\(907\) −15.8541 + 38.2753i −0.526428 + 1.27091i 0.407421 + 0.913241i \(0.366428\pi\)
−0.933848 + 0.357669i \(0.883572\pi\)
\(908\) 0 0
\(909\) 23.0565 9.55032i 0.764737 0.316764i
\(910\) 0 0
\(911\) 12.5214i 0.414851i −0.978251 0.207426i \(-0.933492\pi\)
0.978251 0.207426i \(-0.0665085\pi\)
\(912\) 0 0
\(913\) 50.4497i 1.66964i
\(914\) 0 0
\(915\) 62.4864 25.8827i 2.06574 0.855657i
\(916\) 0 0
\(917\) −2.54079 + 6.13401i −0.0839043 + 0.202563i
\(918\) 0 0
\(919\) 1.19513 1.19513i 0.0394238 0.0394238i −0.687120 0.726544i \(-0.741125\pi\)
0.726544 + 0.687120i \(0.241125\pi\)
\(920\) 0 0
\(921\) −14.3330 14.3330i −0.472287 0.472287i
\(922\) 0 0
\(923\) 58.2715 + 24.1369i 1.91803 + 0.794475i
\(924\) 0 0
\(925\) −0.810217 1.95604i −0.0266398 0.0643141i
\(926\) 0 0
\(927\) 20.6194 0.677231
\(928\) 0 0
\(929\) 45.1410 1.48103 0.740514 0.672041i \(-0.234582\pi\)
0.740514 + 0.672041i \(0.234582\pi\)
\(930\) 0 0
\(931\) 1.19127 + 2.87599i 0.0390424 + 0.0942566i
\(932\) 0 0
\(933\) 48.5162 + 20.0961i 1.58835 + 0.657915i
\(934\) 0 0
\(935\) −18.8910 18.8910i −0.617801 0.617801i
\(936\) 0 0
\(937\) −2.58002 + 2.58002i −0.0842857 + 0.0842857i −0.747993 0.663707i \(-0.768982\pi\)
0.663707 + 0.747993i \(0.268982\pi\)
\(938\) 0 0
\(939\) −24.4774 + 59.0937i −0.798790 + 1.92845i
\(940\) 0 0
\(941\) 5.42523 2.24720i 0.176857 0.0732568i −0.292498 0.956266i \(-0.594486\pi\)
0.469355 + 0.883009i \(0.344486\pi\)
\(942\) 0 0
\(943\) 4.45807i 0.145175i
\(944\) 0 0
\(945\) 0.360189i 0.0117170i
\(946\) 0 0
\(947\) −42.4032 + 17.5640i −1.37792 + 0.570753i −0.943924 0.330162i \(-0.892897\pi\)
−0.433996 + 0.900915i \(0.642897\pi\)
\(948\) 0 0
\(949\) −18.8808 + 45.5822i −0.612896 + 1.47966i
\(950\) 0 0
\(951\) 17.9788 17.9788i 0.583003 0.583003i
\(952\) 0 0
\(953\) −14.8079 14.8079i −0.479673 0.479673i 0.425354 0.905027i \(-0.360150\pi\)
−0.905027 + 0.425354i \(0.860150\pi\)
\(954\) 0 0
\(955\) −33.1216 13.7194i −1.07179 0.443949i
\(956\) 0 0
\(957\) −23.4357 56.5787i −0.757568 1.82893i
\(958\) 0 0
\(959\) 6.49290 0.209667
\(960\) 0 0
\(961\) −29.6274 −0.955723
\(962\) 0 0
\(963\) 3.29292 + 7.94981i 0.106113 + 0.256179i
\(964\) 0 0
\(965\) 30.8066 + 12.7605i 0.991698 + 0.410775i
\(966\) 0 0
\(967\) 24.8604 + 24.8604i 0.799455 + 0.799455i 0.983010 0.183554i \(-0.0587604\pi\)
−0.183554 + 0.983010i \(0.558760\pi\)
\(968\) 0 0
\(969\) −3.21137 + 3.21137i −0.103164 + 0.103164i
\(970\) 0 0
\(971\) −9.66725 + 23.3388i −0.310237 + 0.748978i 0.689459 + 0.724324i \(0.257848\pi\)
−0.999696 + 0.0246533i \(0.992152\pi\)
\(972\) 0 0
\(973\) 11.0836 4.59099i 0.355325 0.147180i
\(974\) 0 0
\(975\) 18.0559i 0.578251i
\(976\) 0 0
\(977\) 54.7057i 1.75019i −0.483952 0.875094i \(-0.660799\pi\)
0.483952 0.875094i \(-0.339201\pi\)
\(978\) 0 0
\(979\) 28.4056 11.7660i 0.907846 0.376042i
\(980\) 0 0
\(981\) −10.6736 + 25.7684i −0.340782 + 0.822720i
\(982\) 0 0
\(983\) −7.85315 + 7.85315i −0.250477 + 0.250477i −0.821166 0.570689i \(-0.806676\pi\)
0.570689 + 0.821166i \(0.306676\pi\)
\(984\) 0 0
\(985\) 0.295389 + 0.295389i 0.00941188 + 0.00941188i
\(986\) 0 0
\(987\) −3.21137 1.33019i −0.102219 0.0423405i
\(988\) 0 0
\(989\) −1.99371 4.81324i −0.0633963 0.153052i
\(990\) 0 0
\(991\) 52.4878 1.66733 0.833665 0.552270i \(-0.186238\pi\)
0.833665 + 0.552270i \(0.186238\pi\)
\(992\) 0 0
\(993\) −20.2217 −0.641716
\(994\) 0 0
\(995\) 11.8992 + 28.7272i 0.377230 + 0.910715i
\(996\) 0 0
\(997\) 31.0060 + 12.8431i 0.981970 + 0.406745i 0.815155 0.579243i \(-0.196652\pi\)
0.166815 + 0.985988i \(0.446652\pi\)
\(998\) 0 0
\(999\) 0.195654 + 0.195654i 0.00619021 + 0.00619021i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 512.2.g.g.449.1 8
4.3 odd 2 512.2.g.e.449.2 8
8.3 odd 2 512.2.g.h.449.1 8
8.5 even 2 512.2.g.f.449.2 8
16.3 odd 4 32.2.g.b.21.2 8
16.5 even 4 256.2.g.c.97.1 8
16.11 odd 4 256.2.g.d.97.2 8
16.13 even 4 128.2.g.b.49.2 8
32.3 odd 8 512.2.g.h.65.1 8
32.5 even 8 128.2.g.b.81.2 8
32.11 odd 8 256.2.g.d.161.2 8
32.13 even 8 inner 512.2.g.g.65.1 8
32.19 odd 8 512.2.g.e.65.2 8
32.21 even 8 256.2.g.c.161.1 8
32.27 odd 8 32.2.g.b.29.2 yes 8
32.29 even 8 512.2.g.f.65.2 8
48.29 odd 4 1152.2.v.b.433.1 8
48.35 even 4 288.2.v.b.181.1 8
64.13 even 16 4096.2.a.q.1.2 8
64.19 odd 16 4096.2.a.k.1.2 8
64.45 even 16 4096.2.a.q.1.7 8
64.51 odd 16 4096.2.a.k.1.7 8
80.3 even 4 800.2.ba.d.149.1 8
80.19 odd 4 800.2.y.b.501.1 8
80.67 even 4 800.2.ba.c.149.2 8
96.5 odd 8 1152.2.v.b.721.1 8
96.59 even 8 288.2.v.b.253.1 8
160.27 even 8 800.2.ba.d.349.1 8
160.59 odd 8 800.2.y.b.701.1 8
160.123 even 8 800.2.ba.c.349.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
32.2.g.b.21.2 8 16.3 odd 4
32.2.g.b.29.2 yes 8 32.27 odd 8
128.2.g.b.49.2 8 16.13 even 4
128.2.g.b.81.2 8 32.5 even 8
256.2.g.c.97.1 8 16.5 even 4
256.2.g.c.161.1 8 32.21 even 8
256.2.g.d.97.2 8 16.11 odd 4
256.2.g.d.161.2 8 32.11 odd 8
288.2.v.b.181.1 8 48.35 even 4
288.2.v.b.253.1 8 96.59 even 8
512.2.g.e.65.2 8 32.19 odd 8
512.2.g.e.449.2 8 4.3 odd 2
512.2.g.f.65.2 8 32.29 even 8
512.2.g.f.449.2 8 8.5 even 2
512.2.g.g.65.1 8 32.13 even 8 inner
512.2.g.g.449.1 8 1.1 even 1 trivial
512.2.g.h.65.1 8 32.3 odd 8
512.2.g.h.449.1 8 8.3 odd 2
800.2.y.b.501.1 8 80.19 odd 4
800.2.y.b.701.1 8 160.59 odd 8
800.2.ba.c.149.2 8 80.67 even 4
800.2.ba.c.349.2 8 160.123 even 8
800.2.ba.d.149.1 8 80.3 even 4
800.2.ba.d.349.1 8 160.27 even 8
1152.2.v.b.433.1 8 48.29 odd 4
1152.2.v.b.721.1 8 96.5 odd 8
4096.2.a.k.1.2 8 64.19 odd 16
4096.2.a.k.1.7 8 64.51 odd 16
4096.2.a.q.1.2 8 64.13 even 16
4096.2.a.q.1.7 8 64.45 even 16