Properties

Label 288.2.v.b.253.1
Level $288$
Weight $2$
Character 288.253
Analytic conductor $2.300$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [288,2,Mod(37,288)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(288, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("288.37");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 288 = 2^{5} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 288.v (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.29969157821\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{8})\)
Coefficient field: 8.0.18939904.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 14x^{6} - 28x^{5} + 43x^{4} - 44x^{3} + 30x^{2} - 12x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 32)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 253.1
Root \(0.500000 + 1.44392i\) of defining polynomial
Character \(\chi\) \(=\) 288.253
Dual form 288.2.v.b.181.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.11137 - 0.874559i) q^{2} +(0.470294 + 1.94392i) q^{4} +(0.707107 + 1.70711i) q^{5} +(-0.665096 + 0.665096i) q^{7} +(1.17740 - 2.57172i) q^{8} +(0.707107 - 2.51564i) q^{10} +(-3.69304 + 1.52971i) q^{11} +(-1.76652 + 4.26475i) q^{13} +(1.32083 - 0.157503i) q^{14} +(-3.55765 + 1.82843i) q^{16} +3.61706i q^{17} +(0.194802 - 0.470294i) q^{19} +(-2.98593 + 2.17740i) q^{20} +(5.44215 + 1.52971i) q^{22} +(1.33490 + 1.33490i) q^{23} +(1.12132 - 1.12132i) q^{25} +(5.69304 - 3.19480i) q^{26} +(-1.60568 - 0.980103i) q^{28} +(5.73838 + 2.37691i) q^{29} +1.17157 q^{31} +(5.55294 + 1.07931i) q^{32} +(3.16333 - 4.01990i) q^{34} +(-1.60568 - 0.665096i) q^{35} +(0.510925 + 1.23348i) q^{37} +(-0.627797 + 0.352305i) q^{38} +(5.22274 + 0.191470i) q^{40} +(-1.66981 - 1.66981i) q^{41} +(-2.54960 + 1.05608i) q^{43} +(-4.71044 - 6.45956i) q^{44} +(-0.316122 - 2.65103i) q^{46} -1.49824i q^{47} +6.11529i q^{49} +(-2.22686 + 0.265543i) q^{50} +(-9.12112 - 1.42828i) q^{52} +(-4.59495 + 1.90329i) q^{53} +(-5.22274 - 5.22274i) q^{55} +(0.927354 + 2.49352i) q^{56} +(-4.29872 - 7.66019i) q^{58} +(-2.04784 - 4.94392i) q^{59} +(13.7102 + 5.67897i) q^{61} +(-1.30205 - 1.02461i) q^{62} +(-5.22746 - 6.05588i) q^{64} -8.52951 q^{65} +(-3.40617 - 1.41088i) q^{67} +(-7.03127 + 1.70108i) q^{68} +(1.20285 + 2.14343i) q^{70} +(9.66157 - 9.66157i) q^{71} +(-7.55765 - 7.55765i) q^{73} +(0.510925 - 1.81769i) q^{74} +(1.00583 + 0.157503i) q^{76} +(1.43882 - 3.47363i) q^{77} -17.2176i q^{79} +(-5.63696 - 4.78039i) q^{80} +(0.395432 + 3.31612i) q^{82} +(-4.82981 + 11.6602i) q^{83} +(-6.17471 + 2.55765i) q^{85} +(3.75716 + 1.05608i) q^{86} +(-0.414214 + 11.2985i) q^{88} +(5.43882 - 5.43882i) q^{89} +(-1.66157 - 4.01138i) q^{91} +(-1.96715 + 3.22274i) q^{92} +(-1.31029 + 1.66510i) q^{94} +0.940588 q^{95} +6.15862 q^{97} +(5.34818 - 6.79637i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{2} + 4 q^{4} - 8 q^{7} + 4 q^{8} - 4 q^{11} - 8 q^{13} - 12 q^{14} + 4 q^{19} - 4 q^{20} + 4 q^{22} + 8 q^{23} - 8 q^{25} + 20 q^{26} - 16 q^{28} + 32 q^{31} + 24 q^{32} - 16 q^{35} - 8 q^{37}+ \cdots + 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/288\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(65\) \(127\)
\(\chi(n)\) \(e\left(\frac{3}{8}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.11137 0.874559i −0.785858 0.618406i
\(3\) 0 0
\(4\) 0.470294 + 1.94392i 0.235147 + 0.971960i
\(5\) 0.707107 + 1.70711i 0.316228 + 0.763441i 0.999448 + 0.0332288i \(0.0105790\pi\)
−0.683220 + 0.730213i \(0.739421\pi\)
\(6\) 0 0
\(7\) −0.665096 + 0.665096i −0.251383 + 0.251383i −0.821537 0.570155i \(-0.806883\pi\)
0.570155 + 0.821537i \(0.306883\pi\)
\(8\) 1.17740 2.57172i 0.416274 0.909239i
\(9\) 0 0
\(10\) 0.707107 2.51564i 0.223607 0.795514i
\(11\) −3.69304 + 1.52971i −1.11349 + 0.461224i −0.862139 0.506672i \(-0.830876\pi\)
−0.251353 + 0.967895i \(0.580876\pi\)
\(12\) 0 0
\(13\) −1.76652 + 4.26475i −0.489944 + 1.18283i 0.464804 + 0.885414i \(0.346125\pi\)
−0.954748 + 0.297416i \(0.903875\pi\)
\(14\) 1.32083 0.157503i 0.353008 0.0420945i
\(15\) 0 0
\(16\) −3.55765 + 1.82843i −0.889412 + 0.457107i
\(17\) 3.61706i 0.877266i 0.898666 + 0.438633i \(0.144537\pi\)
−0.898666 + 0.438633i \(0.855463\pi\)
\(18\) 0 0
\(19\) 0.194802 0.470294i 0.0446907 0.107893i −0.899958 0.435977i \(-0.856403\pi\)
0.944649 + 0.328084i \(0.106403\pi\)
\(20\) −2.98593 + 2.17740i −0.667674 + 0.486882i
\(21\) 0 0
\(22\) 5.44215 + 1.52971i 1.16027 + 0.326134i
\(23\) 1.33490 + 1.33490i 0.278347 + 0.278347i 0.832449 0.554102i \(-0.186938\pi\)
−0.554102 + 0.832449i \(0.686938\pi\)
\(24\) 0 0
\(25\) 1.12132 1.12132i 0.224264 0.224264i
\(26\) 5.69304 3.19480i 1.11650 0.626552i
\(27\) 0 0
\(28\) −1.60568 0.980103i −0.303446 0.185222i
\(29\) 5.73838 + 2.37691i 1.06559 + 0.441382i 0.845433 0.534082i \(-0.179343\pi\)
0.220158 + 0.975464i \(0.429343\pi\)
\(30\) 0 0
\(31\) 1.17157 0.210421 0.105210 0.994450i \(-0.466448\pi\)
0.105210 + 0.994450i \(0.466448\pi\)
\(32\) 5.55294 + 1.07931i 0.981630 + 0.190797i
\(33\) 0 0
\(34\) 3.16333 4.01990i 0.542507 0.689407i
\(35\) −1.60568 0.665096i −0.271410 0.112422i
\(36\) 0 0
\(37\) 0.510925 + 1.23348i 0.0839955 + 0.202783i 0.960297 0.278980i \(-0.0899965\pi\)
−0.876301 + 0.481763i \(0.839996\pi\)
\(38\) −0.627797 + 0.352305i −0.101842 + 0.0571515i
\(39\) 0 0
\(40\) 5.22274 + 0.191470i 0.825788 + 0.0302741i
\(41\) −1.66981 1.66981i −0.260780 0.260780i 0.564591 0.825371i \(-0.309034\pi\)
−0.825371 + 0.564591i \(0.809034\pi\)
\(42\) 0 0
\(43\) −2.54960 + 1.05608i −0.388811 + 0.161051i −0.568521 0.822669i \(-0.692484\pi\)
0.179710 + 0.983720i \(0.442484\pi\)
\(44\) −4.71044 6.45956i −0.710125 0.973815i
\(45\) 0 0
\(46\) −0.316122 2.65103i −0.0466097 0.390873i
\(47\) 1.49824i 0.218540i −0.994012 0.109270i \(-0.965149\pi\)
0.994012 0.109270i \(-0.0348513\pi\)
\(48\) 0 0
\(49\) 6.11529i 0.873614i
\(50\) −2.22686 + 0.265543i −0.314926 + 0.0375535i
\(51\) 0 0
\(52\) −9.12112 1.42828i −1.26487 0.198067i
\(53\) −4.59495 + 1.90329i −0.631164 + 0.261437i −0.675248 0.737591i \(-0.735963\pi\)
0.0440833 + 0.999028i \(0.485963\pi\)
\(54\) 0 0
\(55\) −5.22274 5.22274i −0.704235 0.704235i
\(56\) 0.927354 + 2.49352i 0.123923 + 0.333211i
\(57\) 0 0
\(58\) −4.29872 7.66019i −0.564450 1.00583i
\(59\) −2.04784 4.94392i −0.266606 0.643644i 0.732713 0.680537i \(-0.238254\pi\)
−0.999319 + 0.0368939i \(0.988254\pi\)
\(60\) 0 0
\(61\) 13.7102 + 5.67897i 1.75542 + 0.727117i 0.997173 + 0.0751463i \(0.0239424\pi\)
0.758244 + 0.651971i \(0.226058\pi\)
\(62\) −1.30205 1.02461i −0.165361 0.130126i
\(63\) 0 0
\(64\) −5.22746 6.05588i −0.653432 0.756985i
\(65\) −8.52951 −1.05796
\(66\) 0 0
\(67\) −3.40617 1.41088i −0.416130 0.172367i 0.164788 0.986329i \(-0.447306\pi\)
−0.580918 + 0.813962i \(0.697306\pi\)
\(68\) −7.03127 + 1.70108i −0.852667 + 0.206286i
\(69\) 0 0
\(70\) 1.20285 + 2.14343i 0.143768 + 0.256189i
\(71\) 9.66157 9.66157i 1.14662 1.14662i 0.159403 0.987214i \(-0.449043\pi\)
0.987214 0.159403i \(-0.0509571\pi\)
\(72\) 0 0
\(73\) −7.55765 7.55765i −0.884556 0.884556i 0.109438 0.993994i \(-0.465095\pi\)
−0.993994 + 0.109438i \(0.965095\pi\)
\(74\) 0.510925 1.81769i 0.0593938 0.211302i
\(75\) 0 0
\(76\) 1.00583 + 0.157503i 0.115376 + 0.0180669i
\(77\) 1.43882 3.47363i 0.163969 0.395856i
\(78\) 0 0
\(79\) 17.2176i 1.93714i −0.248750 0.968568i \(-0.580020\pi\)
0.248750 0.968568i \(-0.419980\pi\)
\(80\) −5.63696 4.78039i −0.630231 0.534464i
\(81\) 0 0
\(82\) 0.395432 + 3.31612i 0.0436682 + 0.366204i
\(83\) −4.82981 + 11.6602i −0.530140 + 1.27987i 0.401290 + 0.915951i \(0.368562\pi\)
−0.931430 + 0.363921i \(0.881438\pi\)
\(84\) 0 0
\(85\) −6.17471 + 2.55765i −0.669741 + 0.277416i
\(86\) 3.75716 + 1.05608i 0.405145 + 0.113880i
\(87\) 0 0
\(88\) −0.414214 + 11.2985i −0.0441553 + 1.20443i
\(89\) 5.43882 5.43882i 0.576514 0.576514i −0.357427 0.933941i \(-0.616346\pi\)
0.933941 + 0.357427i \(0.116346\pi\)
\(90\) 0 0
\(91\) −1.66157 4.01138i −0.174179 0.420506i
\(92\) −1.96715 + 3.22274i −0.205089 + 0.335994i
\(93\) 0 0
\(94\) −1.31029 + 1.66510i −0.135147 + 0.171742i
\(95\) 0.940588 0.0965023
\(96\) 0 0
\(97\) 6.15862 0.625313 0.312657 0.949866i \(-0.398781\pi\)
0.312657 + 0.949866i \(0.398781\pi\)
\(98\) 5.34818 6.79637i 0.540248 0.686537i
\(99\) 0 0
\(100\) 2.70711 + 1.65241i 0.270711 + 0.165241i
\(101\) 3.09671 + 7.47612i 0.308134 + 0.743902i 0.999766 + 0.0216512i \(0.00689233\pi\)
−0.691631 + 0.722251i \(0.743108\pi\)
\(102\) 0 0
\(103\) −4.72764 + 4.72764i −0.465828 + 0.465828i −0.900560 0.434732i \(-0.856843\pi\)
0.434732 + 0.900560i \(0.356843\pi\)
\(104\) 8.88784 + 9.56431i 0.871524 + 0.937858i
\(105\) 0 0
\(106\) 6.77123 + 1.90329i 0.657680 + 0.184864i
\(107\) −2.57774 + 1.06774i −0.249200 + 0.103222i −0.503787 0.863828i \(-0.668060\pi\)
0.254587 + 0.967050i \(0.418060\pi\)
\(108\) 0 0
\(109\) 3.46094 8.35544i 0.331498 0.800306i −0.666976 0.745079i \(-0.732412\pi\)
0.998474 0.0552270i \(-0.0175882\pi\)
\(110\) 1.23681 + 10.3720i 0.117925 + 0.988932i
\(111\) 0 0
\(112\) 1.15010 3.58226i 0.108674 0.338491i
\(113\) 11.7757i 1.10776i −0.832596 0.553881i \(-0.813146\pi\)
0.832596 0.553881i \(-0.186854\pi\)
\(114\) 0 0
\(115\) −1.33490 + 3.22274i −0.124480 + 0.300522i
\(116\) −1.92181 + 12.2728i −0.178435 + 1.13950i
\(117\) 0 0
\(118\) −2.04784 + 7.28549i −0.188519 + 0.670683i
\(119\) −2.40569 2.40569i −0.220529 0.220529i
\(120\) 0 0
\(121\) 3.52035 3.52035i 0.320032 0.320032i
\(122\) −10.2706 18.3019i −0.929855 1.65697i
\(123\) 0 0
\(124\) 0.550984 + 2.27744i 0.0494798 + 0.204520i
\(125\) 11.2426 + 4.65685i 1.00557 + 0.416522i
\(126\) 0 0
\(127\) 13.0590 1.15880 0.579400 0.815043i \(-0.303287\pi\)
0.579400 + 0.815043i \(0.303287\pi\)
\(128\) 0.513421 + 11.3021i 0.0453804 + 0.998970i
\(129\) 0 0
\(130\) 9.47945 + 7.45956i 0.831403 + 0.654246i
\(131\) 6.52146 + 2.70128i 0.569783 + 0.236012i 0.648926 0.760851i \(-0.275218\pi\)
−0.0791431 + 0.996863i \(0.525218\pi\)
\(132\) 0 0
\(133\) 0.183228 + 0.442353i 0.0158879 + 0.0383568i
\(134\) 2.55162 + 4.54691i 0.220427 + 0.392793i
\(135\) 0 0
\(136\) 9.30205 + 4.25873i 0.797644 + 0.365183i
\(137\) −4.88118 4.88118i −0.417027 0.417027i 0.467151 0.884178i \(-0.345281\pi\)
−0.884178 + 0.467151i \(0.845281\pi\)
\(138\) 0 0
\(139\) −11.7837 + 4.88098i −0.999482 + 0.413999i −0.821607 0.570054i \(-0.806922\pi\)
−0.177875 + 0.984053i \(0.556922\pi\)
\(140\) 0.537750 3.43411i 0.0454482 0.290235i
\(141\) 0 0
\(142\) −19.1872 + 2.28798i −1.61015 + 0.192003i
\(143\) 18.4522i 1.54305i
\(144\) 0 0
\(145\) 11.4768i 0.953093i
\(146\) 1.78975 + 15.0090i 0.148121 + 1.24215i
\(147\) 0 0
\(148\) −2.15750 + 1.57329i −0.177346 + 0.129324i
\(149\) 5.73838 2.37691i 0.470106 0.194724i −0.135038 0.990840i \(-0.543116\pi\)
0.605144 + 0.796116i \(0.293116\pi\)
\(150\) 0 0
\(151\) 11.1504 + 11.1504i 0.907405 + 0.907405i 0.996062 0.0886573i \(-0.0282576\pi\)
−0.0886573 + 0.996062i \(0.528258\pi\)
\(152\) −0.980103 1.05470i −0.0794968 0.0855475i
\(153\) 0 0
\(154\) −4.63696 + 2.60215i −0.373657 + 0.209688i
\(155\) 0.828427 + 2.00000i 0.0665409 + 0.160644i
\(156\) 0 0
\(157\) 1.22496 + 0.507395i 0.0977624 + 0.0404945i 0.431029 0.902338i \(-0.358151\pi\)
−0.333266 + 0.942833i \(0.608151\pi\)
\(158\) −15.0578 + 19.1352i −1.19794 + 1.52231i
\(159\) 0 0
\(160\) 2.08402 + 10.2426i 0.164756 + 0.809752i
\(161\) −1.77568 −0.139943
\(162\) 0 0
\(163\) 21.3218 + 8.83176i 1.67005 + 0.691757i 0.998776 0.0494542i \(-0.0157482\pi\)
0.671272 + 0.741211i \(0.265748\pi\)
\(164\) 2.46067 4.03127i 0.192146 0.314790i
\(165\) 0 0
\(166\) 15.5652 8.73485i 1.20810 0.677956i
\(167\) −10.8863 + 10.8863i −0.842404 + 0.842404i −0.989171 0.146767i \(-0.953113\pi\)
0.146767 + 0.989171i \(0.453113\pi\)
\(168\) 0 0
\(169\) −5.87515 5.87515i −0.451935 0.451935i
\(170\) 9.09921 + 2.55765i 0.697877 + 0.196163i
\(171\) 0 0
\(172\) −3.25200 4.45956i −0.247963 0.340038i
\(173\) −0.735246 + 1.77504i −0.0558997 + 0.134954i −0.949362 0.314184i \(-0.898269\pi\)
0.893462 + 0.449138i \(0.148269\pi\)
\(174\) 0 0
\(175\) 1.49157i 0.112752i
\(176\) 10.3416 12.1946i 0.779525 0.919203i
\(177\) 0 0
\(178\) −10.8011 + 1.28798i −0.809578 + 0.0965384i
\(179\) 1.87980 4.53823i 0.140503 0.339203i −0.837928 0.545782i \(-0.816233\pi\)
0.978430 + 0.206578i \(0.0662329\pi\)
\(180\) 0 0
\(181\) 1.87868 0.778175i 0.139641 0.0578413i −0.311768 0.950158i \(-0.600921\pi\)
0.451410 + 0.892317i \(0.350921\pi\)
\(182\) −1.66157 + 5.91127i −0.123163 + 0.438172i
\(183\) 0 0
\(184\) 5.00471 1.86128i 0.368952 0.137215i
\(185\) −1.74441 + 1.74441i −0.128251 + 0.128251i
\(186\) 0 0
\(187\) −5.53304 13.3579i −0.404616 0.976829i
\(188\) 2.91245 0.704611i 0.212412 0.0513890i
\(189\) 0 0
\(190\) −1.04534 0.822599i −0.0758371 0.0596776i
\(191\) 19.4022 1.40389 0.701946 0.712231i \(-0.252315\pi\)
0.701946 + 0.712231i \(0.252315\pi\)
\(192\) 0 0
\(193\) −18.0461 −1.29898 −0.649492 0.760368i \(-0.725018\pi\)
−0.649492 + 0.760368i \(0.725018\pi\)
\(194\) −6.84451 5.38607i −0.491408 0.386698i
\(195\) 0 0
\(196\) −11.8876 + 2.87599i −0.849117 + 0.205428i
\(197\) 0.0865175 + 0.208872i 0.00616412 + 0.0148815i 0.926932 0.375230i \(-0.122436\pi\)
−0.920768 + 0.390112i \(0.872436\pi\)
\(198\) 0 0
\(199\) −11.8992 + 11.8992i −0.843513 + 0.843513i −0.989314 0.145801i \(-0.953424\pi\)
0.145801 + 0.989314i \(0.453424\pi\)
\(200\) −1.56348 4.20396i −0.110554 0.297265i
\(201\) 0 0
\(202\) 3.09671 11.0170i 0.217884 0.775154i
\(203\) −5.39745 + 2.23570i −0.378827 + 0.156915i
\(204\) 0 0
\(205\) 1.66981 4.03127i 0.116624 0.281556i
\(206\) 9.38877 1.11957i 0.654146 0.0780039i
\(207\) 0 0
\(208\) −1.51314 18.4024i −0.104917 1.27598i
\(209\) 2.03480i 0.140750i
\(210\) 0 0
\(211\) −3.73060 + 9.00647i −0.256825 + 0.620031i −0.998725 0.0504799i \(-0.983925\pi\)
0.741900 + 0.670511i \(0.233925\pi\)
\(212\) −5.86082 8.03710i −0.402522 0.551990i
\(213\) 0 0
\(214\) 3.79863 + 1.06774i 0.259669 + 0.0729889i
\(215\) −3.60568 3.60568i −0.245906 0.245906i
\(216\) 0 0
\(217\) −0.779208 + 0.779208i −0.0528961 + 0.0528961i
\(218\) −11.1537 + 6.25921i −0.755425 + 0.423927i
\(219\) 0 0
\(220\) 7.69637 12.6088i 0.518889 0.850086i
\(221\) −15.4259 6.38960i −1.03766 0.429811i
\(222\) 0 0
\(223\) 22.6174 1.51458 0.757288 0.653081i \(-0.226524\pi\)
0.757288 + 0.653081i \(0.226524\pi\)
\(224\) −4.41108 + 2.97539i −0.294728 + 0.198802i
\(225\) 0 0
\(226\) −10.2985 + 13.0872i −0.685048 + 0.870545i
\(227\) 9.51294 + 3.94039i 0.631396 + 0.261533i 0.675346 0.737501i \(-0.263994\pi\)
−0.0439500 + 0.999034i \(0.513994\pi\)
\(228\) 0 0
\(229\) −6.53200 15.7697i −0.431647 1.04209i −0.978756 0.205027i \(-0.934272\pi\)
0.547109 0.837061i \(-0.315728\pi\)
\(230\) 4.30205 2.41421i 0.283669 0.159189i
\(231\) 0 0
\(232\) 12.8691 11.9589i 0.844899 0.785141i
\(233\) −10.4486 10.4486i −0.684512 0.684512i 0.276502 0.961013i \(-0.410825\pi\)
−0.961013 + 0.276502i \(0.910825\pi\)
\(234\) 0 0
\(235\) 2.55765 1.05941i 0.166843 0.0691084i
\(236\) 8.64750 6.30593i 0.562904 0.410481i
\(237\) 0 0
\(238\) 0.569699 + 4.77754i 0.0369281 + 0.309682i
\(239\) 11.6733i 0.755085i 0.925992 + 0.377543i \(0.123231\pi\)
−0.925992 + 0.377543i \(0.876769\pi\)
\(240\) 0 0
\(241\) 13.8288i 0.890791i −0.895334 0.445396i \(-0.853063\pi\)
0.895334 0.445396i \(-0.146937\pi\)
\(242\) −6.99117 + 0.833664i −0.449409 + 0.0535899i
\(243\) 0 0
\(244\) −4.59161 + 29.3224i −0.293948 + 1.87717i
\(245\) −10.4395 + 4.32417i −0.666953 + 0.276261i
\(246\) 0 0
\(247\) 1.66157 + 1.66157i 0.105723 + 0.105723i
\(248\) 1.37941 3.01295i 0.0875927 0.191323i
\(249\) 0 0
\(250\) −8.42206 15.0078i −0.532658 0.949180i
\(251\) −5.38745 13.0065i −0.340053 0.820961i −0.997710 0.0676429i \(-0.978452\pi\)
0.657656 0.753318i \(-0.271548\pi\)
\(252\) 0 0
\(253\) −6.97186 2.88784i −0.438317 0.181557i
\(254\) −14.5134 11.4209i −0.910653 0.716610i
\(255\) 0 0
\(256\) 9.31371 13.0098i 0.582107 0.813112i
\(257\) 18.9043 1.17922 0.589609 0.807689i \(-0.299282\pi\)
0.589609 + 0.807689i \(0.299282\pi\)
\(258\) 0 0
\(259\) −1.16020 0.480569i −0.0720911 0.0298611i
\(260\) −4.01138 16.5807i −0.248775 1.02829i
\(261\) 0 0
\(262\) −4.88534 8.70553i −0.301818 0.537829i
\(263\) −13.9086 + 13.9086i −0.857643 + 0.857643i −0.991060 0.133417i \(-0.957405\pi\)
0.133417 + 0.991060i \(0.457405\pi\)
\(264\) 0 0
\(265\) −6.49824 6.49824i −0.399183 0.399183i
\(266\) 0.183228 0.651862i 0.0112345 0.0399682i
\(267\) 0 0
\(268\) 1.14074 7.28485i 0.0696818 0.444993i
\(269\) −5.05209 + 12.1968i −0.308031 + 0.743653i 0.691737 + 0.722149i \(0.256846\pi\)
−0.999769 + 0.0215042i \(0.993154\pi\)
\(270\) 0 0
\(271\) 4.41512i 0.268199i 0.990968 + 0.134100i \(0.0428142\pi\)
−0.990968 + 0.134100i \(0.957186\pi\)
\(272\) −6.61353 12.8682i −0.401004 0.780251i
\(273\) 0 0
\(274\) 1.15593 + 9.69368i 0.0698320 + 0.585616i
\(275\) −2.42579 + 5.85637i −0.146280 + 0.353152i
\(276\) 0 0
\(277\) −23.0454 + 9.54573i −1.38467 + 0.573547i −0.945725 0.324969i \(-0.894646\pi\)
−0.438941 + 0.898516i \(0.644646\pi\)
\(278\) 17.3648 + 4.88098i 1.04147 + 0.292742i
\(279\) 0 0
\(280\) −3.60097 + 3.34628i −0.215199 + 0.199978i
\(281\) 5.83509 5.83509i 0.348092 0.348092i −0.511306 0.859399i \(-0.670838\pi\)
0.859399 + 0.511306i \(0.170838\pi\)
\(282\) 0 0
\(283\) 1.31992 + 3.18656i 0.0784609 + 0.189421i 0.958243 0.285957i \(-0.0923113\pi\)
−0.879782 + 0.475378i \(0.842311\pi\)
\(284\) 23.3251 + 14.2375i 1.38409 + 0.844842i
\(285\) 0 0
\(286\) −16.1375 + 20.5072i −0.954230 + 1.21262i
\(287\) 2.22117 0.131111
\(288\) 0 0
\(289\) 3.91688 0.230405
\(290\) 10.0371 12.7549i 0.589399 0.748996i
\(291\) 0 0
\(292\) 11.1371 18.2458i 0.651752 1.06775i
\(293\) −2.89663 6.99307i −0.169223 0.408540i 0.816403 0.577482i \(-0.195965\pi\)
−0.985626 + 0.168943i \(0.945965\pi\)
\(294\) 0 0
\(295\) 6.99176 6.99176i 0.407076 0.407076i
\(296\) 3.77373 + 0.138348i 0.219343 + 0.00804132i
\(297\) 0 0
\(298\) −8.45622 2.37691i −0.489856 0.137691i
\(299\) −8.05117 + 3.33490i −0.465611 + 0.192862i
\(300\) 0 0
\(301\) 0.993336 2.39813i 0.0572550 0.138226i
\(302\) −2.64055 22.1439i −0.151947 1.27424i
\(303\) 0 0
\(304\) 0.166861 + 2.02932i 0.00957013 + 0.116390i
\(305\) 27.4205i 1.57009i
\(306\) 0 0
\(307\) −3.14481 + 7.59225i −0.179484 + 0.433313i −0.987859 0.155356i \(-0.950348\pi\)
0.808375 + 0.588668i \(0.200348\pi\)
\(308\) 7.42912 + 1.16333i 0.423313 + 0.0662869i
\(309\) 0 0
\(310\) 0.828427 2.94725i 0.0470515 0.167393i
\(311\) 15.0543 + 15.0543i 0.853651 + 0.853651i 0.990581 0.136930i \(-0.0437234\pi\)
−0.136930 + 0.990581i \(0.543723\pi\)
\(312\) 0 0
\(313\) 18.3365 18.3365i 1.03644 1.03644i 0.0371274 0.999311i \(-0.488179\pi\)
0.999311 0.0371274i \(-0.0118208\pi\)
\(314\) −0.917639 1.63520i −0.0517853 0.0922798i
\(315\) 0 0
\(316\) 33.4697 8.09735i 1.88282 0.455511i
\(317\) 9.52348 + 3.94476i 0.534892 + 0.221560i 0.633744 0.773543i \(-0.281517\pi\)
−0.0988523 + 0.995102i \(0.531517\pi\)
\(318\) 0 0
\(319\) −24.8280 −1.39010
\(320\) 6.64167 13.2060i 0.371281 0.738237i
\(321\) 0 0
\(322\) 1.97344 + 1.55294i 0.109975 + 0.0865417i
\(323\) 1.70108 + 0.704611i 0.0946507 + 0.0392056i
\(324\) 0 0
\(325\) 2.80132 + 6.76299i 0.155389 + 0.375143i
\(326\) −15.9725 28.4625i −0.884635 1.57639i
\(327\) 0 0
\(328\) −6.26031 + 2.32824i −0.345668 + 0.128556i
\(329\) 0.996470 + 0.996470i 0.0549372 + 0.0549372i
\(330\) 0 0
\(331\) 7.57421 3.13734i 0.416316 0.172444i −0.164685 0.986346i \(-0.552661\pi\)
0.581002 + 0.813902i \(0.302661\pi\)
\(332\) −24.9379 3.90504i −1.36864 0.214317i
\(333\) 0 0
\(334\) 21.6194 2.57801i 1.18296 0.141062i
\(335\) 6.81234i 0.372198i
\(336\) 0 0
\(337\) 16.8910i 0.920110i 0.887890 + 0.460055i \(0.152170\pi\)
−0.887890 + 0.460055i \(0.847830\pi\)
\(338\) 1.39131 + 11.6676i 0.0756773 + 0.634636i
\(339\) 0 0
\(340\) −7.87579 10.8003i −0.427125 0.585728i
\(341\) −4.32666 + 1.79216i −0.234302 + 0.0970510i
\(342\) 0 0
\(343\) −8.72293 8.72293i −0.470994 0.470994i
\(344\) −0.285965 + 7.80029i −0.0154182 + 0.420563i
\(345\) 0 0
\(346\) 2.36951 1.32971i 0.127386 0.0714859i
\(347\) 11.6582 + 28.1455i 0.625847 + 1.51093i 0.844739 + 0.535179i \(0.179756\pi\)
−0.218892 + 0.975749i \(0.570244\pi\)
\(348\) 0 0
\(349\) 9.99044 + 4.13818i 0.534776 + 0.221512i 0.633694 0.773584i \(-0.281538\pi\)
−0.0989174 + 0.995096i \(0.531538\pi\)
\(350\) 1.30447 1.65769i 0.0697267 0.0886073i
\(351\) 0 0
\(352\) −22.1582 + 4.50843i −1.18104 + 0.240300i
\(353\) −0.673711 −0.0358580 −0.0179290 0.999839i \(-0.505707\pi\)
−0.0179290 + 0.999839i \(0.505707\pi\)
\(354\) 0 0
\(355\) 23.3251 + 9.66157i 1.23797 + 0.512783i
\(356\) 13.1305 + 8.01479i 0.695914 + 0.424783i
\(357\) 0 0
\(358\) −6.05810 + 3.39967i −0.320180 + 0.179678i
\(359\) −3.92568 + 3.92568i −0.207190 + 0.207190i −0.803072 0.595882i \(-0.796802\pi\)
0.595882 + 0.803072i \(0.296802\pi\)
\(360\) 0 0
\(361\) 13.2518 + 13.2518i 0.697463 + 0.697463i
\(362\) −2.76847 0.778175i −0.145508 0.0408999i
\(363\) 0 0
\(364\) 7.01637 5.11648i 0.367758 0.268176i
\(365\) 7.55765 18.2458i 0.395585 0.955027i
\(366\) 0 0
\(367\) 16.4759i 0.860033i 0.902821 + 0.430016i \(0.141492\pi\)
−0.902821 + 0.430016i \(0.858508\pi\)
\(368\) −7.18989 2.30834i −0.374799 0.120331i
\(369\) 0 0
\(370\) 3.46427 0.413098i 0.180099 0.0214759i
\(371\) 1.79021 4.32195i 0.0929431 0.224384i
\(372\) 0 0
\(373\) −12.6790 + 5.25180i −0.656492 + 0.271928i −0.685962 0.727638i \(-0.740618\pi\)
0.0294695 + 0.999566i \(0.490618\pi\)
\(374\) −5.53304 + 19.6846i −0.286107 + 1.01787i
\(375\) 0 0
\(376\) −3.85304 1.76402i −0.198705 0.0909725i
\(377\) −20.2739 + 20.2739i −1.04416 + 1.04416i
\(378\) 0 0
\(379\) −5.06746 12.2339i −0.260298 0.628414i 0.738659 0.674079i \(-0.235459\pi\)
−0.998957 + 0.0456649i \(0.985459\pi\)
\(380\) 0.442353 + 1.82843i 0.0226922 + 0.0937963i
\(381\) 0 0
\(382\) −21.5630 16.9683i −1.10326 0.868175i
\(383\) −14.5667 −0.744322 −0.372161 0.928168i \(-0.621383\pi\)
−0.372161 + 0.928168i \(0.621383\pi\)
\(384\) 0 0
\(385\) 6.94725 0.354065
\(386\) 20.0559 + 15.7823i 1.02082 + 0.803300i
\(387\) 0 0
\(388\) 2.89636 + 11.9719i 0.147040 + 0.607779i
\(389\) −14.2795 34.4739i −0.724002 1.74789i −0.661617 0.749842i \(-0.730129\pi\)
−0.0623850 0.998052i \(-0.519871\pi\)
\(390\) 0 0
\(391\) −4.82843 + 4.82843i −0.244184 + 0.244184i
\(392\) 15.7268 + 7.20015i 0.794324 + 0.363663i
\(393\) 0 0
\(394\) 0.0865175 0.307799i 0.00435869 0.0155067i
\(395\) 29.3923 12.1747i 1.47889 0.612576i
\(396\) 0 0
\(397\) 8.88405 21.4480i 0.445877 1.07644i −0.527975 0.849260i \(-0.677048\pi\)
0.973852 0.227183i \(-0.0729516\pi\)
\(398\) 23.6310 2.81789i 1.18452 0.141248i
\(399\) 0 0
\(400\) −1.93901 + 6.03951i −0.0969505 + 0.301976i
\(401\) 2.51509i 0.125598i −0.998026 0.0627989i \(-0.979997\pi\)
0.998026 0.0627989i \(-0.0200027\pi\)
\(402\) 0 0
\(403\) −2.06961 + 4.99647i −0.103094 + 0.248892i
\(404\) −13.0766 + 9.53573i −0.650586 + 0.474420i
\(405\) 0 0
\(406\) 7.95382 + 2.23570i 0.394742 + 0.110956i
\(407\) −3.77373 3.77373i −0.187057 0.187057i
\(408\) 0 0
\(409\) −5.32666 + 5.32666i −0.263386 + 0.263386i −0.826428 0.563042i \(-0.809631\pi\)
0.563042 + 0.826428i \(0.309631\pi\)
\(410\) −5.38136 + 3.01990i −0.265767 + 0.149142i
\(411\) 0 0
\(412\) −11.4135 6.96678i −0.562305 0.343228i
\(413\) 4.65019 + 1.92617i 0.228821 + 0.0947807i
\(414\) 0 0
\(415\) −23.3204 −1.14475
\(416\) −14.4124 + 21.7753i −0.706624 + 1.06762i
\(417\) 0 0
\(418\) 1.77955 2.26142i 0.0870409 0.110610i
\(419\) −10.5509 4.37032i −0.515444 0.213504i 0.109770 0.993957i \(-0.464988\pi\)
−0.625214 + 0.780453i \(0.714988\pi\)
\(420\) 0 0
\(421\) 1.72505 + 4.16464i 0.0840739 + 0.202972i 0.960326 0.278881i \(-0.0899636\pi\)
−0.876252 + 0.481854i \(0.839964\pi\)
\(422\) 12.0228 6.74690i 0.585259 0.328434i
\(423\) 0 0
\(424\) −0.515372 + 14.0578i −0.0250287 + 0.682709i
\(425\) 4.05588 + 4.05588i 0.196739 + 0.196739i
\(426\) 0 0
\(427\) −12.8957 + 5.34157i −0.624066 + 0.258497i
\(428\) −3.28789 4.50877i −0.158926 0.217940i
\(429\) 0 0
\(430\) 0.853872 + 7.16064i 0.0411774 + 0.345317i
\(431\) 16.9800i 0.817897i 0.912557 + 0.408949i \(0.134104\pi\)
−0.912557 + 0.408949i \(0.865896\pi\)
\(432\) 0 0
\(433\) 16.9567i 0.814886i 0.913231 + 0.407443i \(0.133579\pi\)
−0.913231 + 0.407443i \(0.866421\pi\)
\(434\) 1.54745 0.184527i 0.0742802 0.00885756i
\(435\) 0 0
\(436\) 17.8700 + 2.79827i 0.855816 + 0.134013i
\(437\) 0.887839 0.367755i 0.0424711 0.0175921i
\(438\) 0 0
\(439\) 10.5596 + 10.5596i 0.503982 + 0.503982i 0.912673 0.408691i \(-0.134015\pi\)
−0.408691 + 0.912673i \(0.634015\pi\)
\(440\) −19.5807 + 7.28216i −0.933472 + 0.347163i
\(441\) 0 0
\(442\) 11.5558 + 20.5921i 0.549653 + 0.979464i
\(443\) −6.31087 15.2358i −0.299838 0.723874i −0.999952 0.00984190i \(-0.996867\pi\)
0.700113 0.714032i \(-0.253133\pi\)
\(444\) 0 0
\(445\) 13.1305 + 5.43882i 0.622444 + 0.257825i
\(446\) −25.1364 19.7803i −1.19024 0.936623i
\(447\) 0 0
\(448\) 7.50450 + 0.550984i 0.354554 + 0.0260315i
\(449\) −8.07197 −0.380940 −0.190470 0.981693i \(-0.561001\pi\)
−0.190470 + 0.981693i \(0.561001\pi\)
\(450\) 0 0
\(451\) 8.72098 + 3.61235i 0.410655 + 0.170099i
\(452\) 22.8910 5.53803i 1.07670 0.260487i
\(453\) 0 0
\(454\) −7.12631 12.6989i −0.334454 0.595987i
\(455\) 5.67294 5.67294i 0.265952 0.265952i
\(456\) 0 0
\(457\) −7.68314 7.68314i −0.359402 0.359402i 0.504191 0.863592i \(-0.331791\pi\)
−0.863592 + 0.504191i \(0.831791\pi\)
\(458\) −6.53200 + 23.2386i −0.305221 + 1.08587i
\(459\) 0 0
\(460\) −6.89255 1.07931i −0.321367 0.0503231i
\(461\) 5.90199 14.2487i 0.274883 0.663627i −0.724796 0.688964i \(-0.758066\pi\)
0.999679 + 0.0253371i \(0.00806593\pi\)
\(462\) 0 0
\(463\) 27.3231i 1.26981i −0.772589 0.634907i \(-0.781038\pi\)
0.772589 0.634907i \(-0.218962\pi\)
\(464\) −24.7611 + 2.03599i −1.14951 + 0.0945182i
\(465\) 0 0
\(466\) 2.47437 + 20.7502i 0.114623 + 0.961236i
\(467\) 9.40577 22.7075i 0.435247 1.05078i −0.542323 0.840170i \(-0.682455\pi\)
0.977570 0.210610i \(-0.0675449\pi\)
\(468\) 0 0
\(469\) 3.20380 1.32706i 0.147938 0.0612779i
\(470\) −3.76901 1.05941i −0.173852 0.0488670i
\(471\) 0 0
\(472\) −15.1255 0.554513i −0.696207 0.0255235i
\(473\) 7.80029 7.80029i 0.358658 0.358658i
\(474\) 0 0
\(475\) −0.308915 0.745786i −0.0141740 0.0342190i
\(476\) 3.54509 5.80785i 0.162489 0.266203i
\(477\) 0 0
\(478\) 10.2090 12.9734i 0.466950 0.593390i
\(479\) −3.91155 −0.178723 −0.0893616 0.995999i \(-0.528483\pi\)
−0.0893616 + 0.995999i \(0.528483\pi\)
\(480\) 0 0
\(481\) −6.16305 −0.281011
\(482\) −12.0941 + 15.3689i −0.550871 + 0.700036i
\(483\) 0 0
\(484\) 8.49887 + 5.18768i 0.386312 + 0.235803i
\(485\) 4.35480 + 10.5134i 0.197741 + 0.477390i
\(486\) 0 0
\(487\) −8.14685 + 8.14685i −0.369169 + 0.369169i −0.867174 0.498005i \(-0.834066\pi\)
0.498005 + 0.867174i \(0.334066\pi\)
\(488\) 30.7471 28.5724i 1.39186 1.29341i
\(489\) 0 0
\(490\) 15.3839 + 4.32417i 0.694972 + 0.195346i
\(491\) −11.2886 + 4.67590i −0.509448 + 0.211020i −0.622575 0.782560i \(-0.713913\pi\)
0.113127 + 0.993581i \(0.463913\pi\)
\(492\) 0 0
\(493\) −8.59744 + 20.7561i −0.387209 + 0.934806i
\(494\) −0.393480 3.29975i −0.0177035 0.148463i
\(495\) 0 0
\(496\) −4.16804 + 2.14214i −0.187151 + 0.0961847i
\(497\) 12.8517i 0.576479i
\(498\) 0 0
\(499\) 12.4071 29.9533i 0.555417 1.34089i −0.357944 0.933743i \(-0.616522\pi\)
0.913361 0.407152i \(-0.133478\pi\)
\(500\) −3.76521 + 24.0449i −0.168385 + 1.07532i
\(501\) 0 0
\(502\) −5.38745 + 19.1667i −0.240454 + 0.855450i
\(503\) −8.77059 8.77059i −0.391061 0.391061i 0.484004 0.875066i \(-0.339182\pi\)
−0.875066 + 0.484004i \(0.839182\pi\)
\(504\) 0 0
\(505\) −10.5728 + 10.5728i −0.470485 + 0.470485i
\(506\) 5.22274 + 9.30676i 0.232179 + 0.413736i
\(507\) 0 0
\(508\) 6.14158 + 25.3857i 0.272488 + 1.12631i
\(509\) −20.0994 8.32546i −0.890892 0.369020i −0.110181 0.993912i \(-0.535143\pi\)
−0.780711 + 0.624892i \(0.785143\pi\)
\(510\) 0 0
\(511\) 10.0531 0.444724
\(512\) −21.7288 + 6.31333i −0.960287 + 0.279013i
\(513\) 0 0
\(514\) −21.0097 16.5329i −0.926698 0.729236i
\(515\) −11.4135 4.72764i −0.502941 0.208325i
\(516\) 0 0
\(517\) 2.29186 + 5.53304i 0.100796 + 0.243343i
\(518\) 0.869124 + 1.54875i 0.0381871 + 0.0680483i
\(519\) 0 0
\(520\) −10.0426 + 21.9355i −0.440399 + 0.961934i
\(521\) 29.8910 + 29.8910i 1.30955 + 1.30955i 0.921741 + 0.387807i \(0.126767\pi\)
0.387807 + 0.921741i \(0.373233\pi\)
\(522\) 0 0
\(523\) 32.7654 13.5719i 1.43273 0.593456i 0.474706 0.880144i \(-0.342554\pi\)
0.958024 + 0.286688i \(0.0925544\pi\)
\(524\) −2.18406 + 13.9476i −0.0954113 + 0.609304i
\(525\) 0 0
\(526\) 27.6216 3.29374i 1.20436 0.143614i
\(527\) 4.23765i 0.184595i
\(528\) 0 0
\(529\) 19.4361i 0.845046i
\(530\) 1.53887 + 12.9050i 0.0668441 + 0.560559i
\(531\) 0 0
\(532\) −0.773727 + 0.564217i −0.0335453 + 0.0244619i
\(533\) 10.0711 4.17157i 0.436226 0.180691i
\(534\) 0 0
\(535\) −3.64548 3.64548i −0.157608 0.157608i
\(536\) −7.63881 + 7.09853i −0.329947 + 0.306610i
\(537\) 0 0
\(538\) 16.2816 9.13685i 0.701949 0.393918i
\(539\) −9.35460 22.5840i −0.402931 0.972762i
\(540\) 0 0
\(541\) −11.2925 4.67751i −0.485502 0.201102i 0.126486 0.991968i \(-0.459630\pi\)
−0.611988 + 0.790867i \(0.709630\pi\)
\(542\) 3.86128 4.90683i 0.165856 0.210767i
\(543\) 0 0
\(544\) −3.90393 + 20.0853i −0.167379 + 0.861150i
\(545\) 16.7109 0.715815
\(546\) 0 0
\(547\) −19.1256 7.92207i −0.817750 0.338723i −0.0657087 0.997839i \(-0.520931\pi\)
−0.752042 + 0.659116i \(0.770931\pi\)
\(548\) 7.19303 11.7842i 0.307271 0.503396i
\(549\) 0 0
\(550\) 7.81769 4.38711i 0.333347 0.187067i
\(551\) 2.23570 2.23570i 0.0952439 0.0952439i
\(552\) 0 0
\(553\) 11.4514 + 11.4514i 0.486962 + 0.486962i
\(554\) 33.9603 + 9.54573i 1.44284 + 0.405559i
\(555\) 0 0
\(556\) −15.0300 20.6111i −0.637416 0.874106i
\(557\) −12.3617 + 29.8439i −0.523783 + 1.26452i 0.411753 + 0.911295i \(0.364916\pi\)
−0.935537 + 0.353229i \(0.885084\pi\)
\(558\) 0 0
\(559\) 12.7390i 0.538803i
\(560\) 6.92854 0.569699i 0.292784 0.0240742i
\(561\) 0 0
\(562\) −11.5881 + 1.38182i −0.488814 + 0.0582888i
\(563\) 10.5540 25.4797i 0.444800 1.07384i −0.529444 0.848345i \(-0.677600\pi\)
0.974244 0.225497i \(-0.0724004\pi\)
\(564\) 0 0
\(565\) 20.1023 8.32666i 0.845712 0.350305i
\(566\) 1.31992 4.69580i 0.0554802 0.197379i
\(567\) 0 0
\(568\) −13.4713 36.2223i −0.565242 1.51986i
\(569\) 23.7855 23.7855i 0.997139 0.997139i −0.00285688 0.999996i \(-0.500909\pi\)
0.999996 + 0.00285688i \(0.000909375\pi\)
\(570\) 0 0
\(571\) −0.904405 2.18343i −0.0378482 0.0913736i 0.903825 0.427902i \(-0.140747\pi\)
−0.941673 + 0.336528i \(0.890747\pi\)
\(572\) 35.8695 8.67793i 1.49978 0.362843i
\(573\) 0 0
\(574\) −2.46854 1.94254i −0.103035 0.0810800i
\(575\) 2.99371 0.124846
\(576\) 0 0
\(577\) 24.8839 1.03593 0.517965 0.855402i \(-0.326690\pi\)
0.517965 + 0.855402i \(0.326690\pi\)
\(578\) −4.35311 3.42554i −0.181066 0.142484i
\(579\) 0 0
\(580\) −22.3099 + 5.39745i −0.926368 + 0.224117i
\(581\) −4.54286 10.9674i −0.188469 0.455006i
\(582\) 0 0
\(583\) 14.0578 14.0578i 0.582216 0.582216i
\(584\) −28.3345 + 10.5377i −1.17249 + 0.436055i
\(585\) 0 0
\(586\) −2.89663 + 10.3052i −0.119658 + 0.425703i
\(587\) 40.1685 16.6383i 1.65793 0.686738i 0.660015 0.751253i \(-0.270550\pi\)
0.997917 + 0.0645151i \(0.0205501\pi\)
\(588\) 0 0
\(589\) 0.228225 0.550984i 0.00940384 0.0227029i
\(590\) −13.8851 + 1.65574i −0.571642 + 0.0681657i
\(591\) 0 0
\(592\) −4.07302 3.45410i −0.167400 0.141963i
\(593\) 9.10197i 0.373773i 0.982382 + 0.186886i \(0.0598397\pi\)
−0.982382 + 0.186886i \(0.940160\pi\)
\(594\) 0 0
\(595\) 2.40569 5.80785i 0.0986238 0.238099i
\(596\) 7.31926 + 10.0371i 0.299808 + 0.411136i
\(597\) 0 0
\(598\) 11.8644 + 3.33490i 0.485172 + 0.136374i
\(599\) −3.04488 3.04488i −0.124410 0.124410i 0.642160 0.766571i \(-0.278038\pi\)
−0.766571 + 0.642160i \(0.778038\pi\)
\(600\) 0 0
\(601\) 9.53880 9.53880i 0.389096 0.389096i −0.485269 0.874365i \(-0.661278\pi\)
0.874365 + 0.485269i \(0.161278\pi\)
\(602\) −3.20127 + 1.79648i −0.130474 + 0.0732190i
\(603\) 0 0
\(604\) −16.4315 + 26.9194i −0.668588 + 1.09533i
\(605\) 8.49887 + 3.52035i 0.345528 + 0.143123i
\(606\) 0 0
\(607\) −3.66391 −0.148714 −0.0743568 0.997232i \(-0.523690\pi\)
−0.0743568 + 0.997232i \(0.523690\pi\)
\(608\) 1.58932 2.40126i 0.0644553 0.0973839i
\(609\) 0 0
\(610\) 23.9808 30.4743i 0.970955 1.23387i
\(611\) 6.38960 + 2.64666i 0.258496 + 0.107072i
\(612\) 0 0
\(613\) −11.6012 28.0079i −0.468570 1.13123i −0.964788 0.263029i \(-0.915278\pi\)
0.496218 0.868198i \(-0.334722\pi\)
\(614\) 10.1349 5.68749i 0.409012 0.229528i
\(615\) 0 0
\(616\) −7.23911 7.79009i −0.291672 0.313872i
\(617\) −5.86100 5.86100i −0.235955 0.235955i 0.579218 0.815173i \(-0.303358\pi\)
−0.815173 + 0.579218i \(0.803358\pi\)
\(618\) 0 0
\(619\) −36.9173 + 15.2917i −1.48383 + 0.614624i −0.969965 0.243245i \(-0.921788\pi\)
−0.513868 + 0.857869i \(0.671788\pi\)
\(620\) −3.49824 + 2.55098i −0.140493 + 0.102450i
\(621\) 0 0
\(622\) −3.56505 29.8968i −0.142946 1.19875i
\(623\) 7.23468i 0.289851i
\(624\) 0 0
\(625\) 14.5563i 0.582254i
\(626\) −36.4149 + 4.34231i −1.45543 + 0.173554i
\(627\) 0 0
\(628\) −0.410244 + 2.61985i −0.0163705 + 0.104543i
\(629\) −4.46157 + 1.84804i −0.177895 + 0.0736864i
\(630\) 0 0
\(631\) −21.0543 21.0543i −0.838159 0.838159i 0.150458 0.988616i \(-0.451925\pi\)
−0.988616 + 0.150458i \(0.951925\pi\)
\(632\) −44.2789 20.2721i −1.76132 0.806379i
\(633\) 0 0
\(634\) −7.13421 12.7129i −0.283336 0.504895i
\(635\) 9.23412 + 22.2931i 0.366445 + 0.884676i
\(636\) 0 0
\(637\) −26.0802 10.8028i −1.03334 0.428022i
\(638\) 27.5932 + 21.7136i 1.09242 + 0.859649i
\(639\) 0 0
\(640\) −18.9308 + 8.86822i −0.748304 + 0.350547i
\(641\) 6.57429 0.259669 0.129835 0.991536i \(-0.458555\pi\)
0.129835 + 0.991536i \(0.458555\pi\)
\(642\) 0 0
\(643\) −24.1050 9.98462i −0.950608 0.393755i −0.147149 0.989114i \(-0.547010\pi\)
−0.803459 + 0.595360i \(0.797010\pi\)
\(644\) −0.835091 3.45178i −0.0329072 0.136019i
\(645\) 0 0
\(646\) −1.27431 2.27078i −0.0501370 0.0893426i
\(647\) −19.1598 + 19.1598i −0.753250 + 0.753250i −0.975084 0.221835i \(-0.928795\pi\)
0.221835 + 0.975084i \(0.428795\pi\)
\(648\) 0 0
\(649\) 15.1255 + 15.1255i 0.593727 + 0.593727i
\(650\) 2.80132 9.96612i 0.109877 0.390903i
\(651\) 0 0
\(652\) −7.14074 + 45.6013i −0.279653 + 1.78588i
\(653\) 5.73339 13.8416i 0.224365 0.541665i −0.771109 0.636703i \(-0.780298\pi\)
0.995474 + 0.0950389i \(0.0302975\pi\)
\(654\) 0 0
\(655\) 13.0429i 0.509629i
\(656\) 8.99371 + 2.88747i 0.351145 + 0.112737i
\(657\) 0 0
\(658\) −0.235977 1.97892i −0.00919934 0.0771464i
\(659\) 0.202554 0.489009i 0.00789039 0.0190491i −0.919885 0.392188i \(-0.871718\pi\)
0.927776 + 0.373139i \(0.121718\pi\)
\(660\) 0 0
\(661\) 6.45241 2.67268i 0.250970 0.103955i −0.253652 0.967295i \(-0.581632\pi\)
0.504622 + 0.863340i \(0.331632\pi\)
\(662\) −11.1616 3.13734i −0.433806 0.121936i
\(663\) 0 0
\(664\) 24.3001 + 26.1496i 0.943026 + 1.01480i
\(665\) −0.625581 + 0.625581i −0.0242590 + 0.0242590i
\(666\) 0 0
\(667\) 4.48723 + 10.8331i 0.173746 + 0.419461i
\(668\) −26.2818 16.0423i −1.01687 0.620694i
\(669\) 0 0
\(670\) −5.95779 + 7.57104i −0.230170 + 0.292495i
\(671\) −59.3196 −2.29001
\(672\) 0 0
\(673\) −24.3285 −0.937793 −0.468897 0.883253i \(-0.655348\pi\)
−0.468897 + 0.883253i \(0.655348\pi\)
\(674\) 14.7721 18.7721i 0.569002 0.723076i
\(675\) 0 0
\(676\) 8.65777 14.1839i 0.332991 0.545533i
\(677\) −1.60737 3.88054i −0.0617763 0.149141i 0.889977 0.456005i \(-0.150720\pi\)
−0.951753 + 0.306864i \(0.900720\pi\)
\(678\) 0 0
\(679\) −4.09607 + 4.09607i −0.157193 + 0.157193i
\(680\) −0.692559 + 18.8910i −0.0265584 + 0.724436i
\(681\) 0 0
\(682\) 6.37588 + 1.79216i 0.244145 + 0.0686254i
\(683\) −24.8133 + 10.2780i −0.949455 + 0.393277i −0.803026 0.595944i \(-0.796778\pi\)
−0.146429 + 0.989221i \(0.546778\pi\)
\(684\) 0 0
\(685\) 4.88118 11.7842i 0.186500 0.450251i
\(686\) 2.06570 + 17.3231i 0.0788689 + 0.661400i
\(687\) 0 0
\(688\) 7.13962 8.41893i 0.272196 0.320969i
\(689\) 22.9585i 0.874650i
\(690\) 0 0
\(691\) 8.56885 20.6870i 0.325974 0.786972i −0.672909 0.739725i \(-0.734955\pi\)
0.998883 0.0472463i \(-0.0150446\pi\)
\(692\) −3.79632 0.594468i −0.144314 0.0225983i
\(693\) 0 0
\(694\) 11.6582 41.4759i 0.442541 1.57440i
\(695\) −16.6647 16.6647i −0.632128 0.632128i
\(696\) 0 0
\(697\) 6.03979 6.03979i 0.228774 0.228774i
\(698\) −7.48402 13.3363i −0.283274 0.504786i
\(699\) 0 0
\(700\) −2.89949 + 0.701477i −0.109591 + 0.0265133i
\(701\) −28.1557 11.6625i −1.06343 0.440486i −0.218760 0.975779i \(-0.570201\pi\)
−0.844667 + 0.535293i \(0.820201\pi\)
\(702\) 0 0
\(703\) 0.679628 0.0256326
\(704\) 28.5689 + 14.3681i 1.07673 + 0.541519i
\(705\) 0 0
\(706\) 0.748744 + 0.589200i 0.0281793 + 0.0221748i
\(707\) −7.03195 2.91273i −0.264464 0.109544i
\(708\) 0 0
\(709\) 12.4408 + 30.0346i 0.467223 + 1.12797i 0.965370 + 0.260883i \(0.0840136\pi\)
−0.498148 + 0.867092i \(0.665986\pi\)
\(710\) −17.4732 31.1367i −0.655759 1.16854i
\(711\) 0 0
\(712\) −7.58344 20.3908i −0.284201 0.764177i
\(713\) 1.56394 + 1.56394i 0.0585699 + 0.0585699i
\(714\) 0 0
\(715\) 31.4998 13.0476i 1.17803 0.487954i
\(716\) 9.70601 + 1.51987i 0.362730 + 0.0568002i
\(717\) 0 0
\(718\) 7.79613 0.929652i 0.290949 0.0346943i
\(719\) 33.6333i 1.25431i −0.778894 0.627155i \(-0.784219\pi\)
0.778894 0.627155i \(-0.215781\pi\)
\(720\) 0 0
\(721\) 6.28867i 0.234202i
\(722\) −3.13820 26.3172i −0.116792 0.979423i
\(723\) 0 0
\(724\) 2.39624 + 3.28603i 0.0890556 + 0.122124i
\(725\) 9.09984 3.76928i 0.337960 0.139988i
\(726\) 0 0
\(727\) −7.43334 7.43334i −0.275687 0.275687i 0.555697 0.831385i \(-0.312451\pi\)
−0.831385 + 0.555697i \(0.812451\pi\)
\(728\) −12.2725 0.449919i −0.454847 0.0166751i
\(729\) 0 0
\(730\) −24.3564 + 13.6682i −0.901469 + 0.505884i
\(731\) −3.81991 9.22207i −0.141284 0.341090i
\(732\) 0 0
\(733\) −0.328598 0.136110i −0.0121371 0.00502733i 0.376607 0.926373i \(-0.377091\pi\)
−0.388744 + 0.921346i \(0.627091\pi\)
\(734\) 14.4091 18.3108i 0.531850 0.675864i
\(735\) 0 0
\(736\) 5.97186 + 8.85341i 0.220126 + 0.326341i
\(737\) 14.7373 0.542857
\(738\) 0 0
\(739\) −43.8857 18.1780i −1.61436 0.668690i −0.621008 0.783804i \(-0.713277\pi\)
−0.993352 + 0.115114i \(0.963277\pi\)
\(740\) −4.21137 2.57060i −0.154813 0.0944972i
\(741\) 0 0
\(742\) −5.76939 + 3.23765i −0.211801 + 0.118858i
\(743\) 30.3220 30.3220i 1.11240 1.11240i 0.119580 0.992825i \(-0.461845\pi\)
0.992825 0.119580i \(-0.0381548\pi\)
\(744\) 0 0
\(745\) 8.11529 + 8.11529i 0.297321 + 0.297321i
\(746\) 18.6841 + 5.25180i 0.684072 + 0.192282i
\(747\) 0 0
\(748\) 23.3646 17.0379i 0.854294 0.622969i
\(749\) 1.00430 2.42459i 0.0366963 0.0885927i
\(750\) 0 0
\(751\) 51.3686i 1.87447i 0.348701 + 0.937234i \(0.386623\pi\)
−0.348701 + 0.937234i \(0.613377\pi\)
\(752\) 2.73941 + 5.33019i 0.0998961 + 0.194372i
\(753\) 0 0
\(754\) 40.2626 4.80112i 1.46628 0.174847i
\(755\) −11.1504 + 26.9194i −0.405804 + 0.979697i
\(756\) 0 0
\(757\) 15.2644 6.32270i 0.554793 0.229803i −0.0876302 0.996153i \(-0.527929\pi\)
0.642423 + 0.766350i \(0.277929\pi\)
\(758\) −5.06746 + 18.0282i −0.184058 + 0.654814i
\(759\) 0 0
\(760\) 1.10745 2.41893i 0.0401714 0.0877437i
\(761\) −26.6859 + 26.6859i −0.967362 + 0.967362i −0.999484 0.0321218i \(-0.989774\pi\)
0.0321218 + 0.999484i \(0.489774\pi\)
\(762\) 0 0
\(763\) 3.25531 + 7.85902i 0.117850 + 0.284516i
\(764\) 9.12472 + 37.7162i 0.330121 + 1.36453i
\(765\) 0 0
\(766\) 16.1890 + 12.7394i 0.584932 + 0.460294i
\(767\) 24.7021 0.891943
\(768\) 0 0
\(769\) 44.0390 1.58809 0.794044 0.607861i \(-0.207972\pi\)
0.794044 + 0.607861i \(0.207972\pi\)
\(770\) −7.72098 6.07578i −0.278245 0.218956i
\(771\) 0 0
\(772\) −8.48695 35.0801i −0.305452 1.26256i
\(773\) 15.4001 + 37.1790i 0.553902 + 1.33724i 0.914526 + 0.404526i \(0.132564\pi\)
−0.360625 + 0.932711i \(0.617436\pi\)
\(774\) 0 0
\(775\) 1.31371 1.31371i 0.0471898 0.0471898i
\(776\) 7.25116 15.8382i 0.260302 0.568559i
\(777\) 0 0
\(778\) −14.2795 + 50.8016i −0.511946 + 1.82132i
\(779\) −1.11058 + 0.460018i −0.0397908 + 0.0164819i
\(780\) 0 0
\(781\) −20.9012 + 50.4599i −0.747903 + 1.80560i
\(782\) 9.58892 1.14343i 0.342899 0.0408891i
\(783\) 0 0
\(784\) −11.1814 21.7561i −0.399335 0.777002i
\(785\) 2.44992i 0.0874413i
\(786\) 0 0
\(787\) 0.948632 2.29020i 0.0338151 0.0816368i −0.906070 0.423128i \(-0.860932\pi\)
0.939885 + 0.341491i \(0.110932\pi\)
\(788\) −0.365341 + 0.266414i −0.0130147 + 0.00949061i
\(789\) 0 0
\(790\) −43.3133 12.1747i −1.54102 0.433157i
\(791\) 7.83196 + 7.83196i 0.278472 + 0.278472i
\(792\) 0 0
\(793\) −48.4388 + 48.4388i −1.72011 + 1.72011i
\(794\) −28.6310 + 16.0671i −1.01608 + 0.570199i
\(795\) 0 0
\(796\) −28.7272 17.5350i −1.01821 0.621511i
\(797\) 2.76562 + 1.14556i 0.0979632 + 0.0405777i 0.431127 0.902291i \(-0.358116\pi\)
−0.333164 + 0.942869i \(0.608116\pi\)
\(798\) 0 0
\(799\) 5.41921 0.191718
\(800\) 7.43687 5.01637i 0.262933 0.177355i
\(801\) 0 0
\(802\) −2.19960 + 2.79520i −0.0776704 + 0.0987020i
\(803\) 39.4717 + 16.3497i 1.39292 + 0.576968i
\(804\) 0 0
\(805\) −1.25559 3.03127i −0.0442539 0.106838i
\(806\) 6.66981 3.74294i 0.234934 0.131840i
\(807\) 0 0
\(808\) 22.8725 + 0.838527i 0.804653 + 0.0294993i
\(809\) 7.12825 + 7.12825i 0.250616 + 0.250616i 0.821223 0.570607i \(-0.193292\pi\)
−0.570607 + 0.821223i \(0.693292\pi\)
\(810\) 0 0
\(811\) 27.4750 11.3805i 0.964777 0.399624i 0.156012 0.987755i \(-0.450136\pi\)
0.808765 + 0.588131i \(0.200136\pi\)
\(812\) −6.88440 9.44077i −0.241595 0.331306i
\(813\) 0 0
\(814\) 0.893667 + 7.49436i 0.0313230 + 0.262677i
\(815\) 42.6435i 1.49374i
\(816\) 0 0
\(817\) 1.40479i 0.0491474i
\(818\) 10.5784 1.26142i 0.369864 0.0441046i
\(819\) 0 0
\(820\) 8.62177 + 1.35009i 0.301085 + 0.0471472i
\(821\) −34.1861 + 14.1603i −1.19310 + 0.494199i −0.888764 0.458364i \(-0.848435\pi\)
−0.304339 + 0.952564i \(0.598435\pi\)
\(822\) 0 0
\(823\) 27.3810 + 27.3810i 0.954440 + 0.954440i 0.999006 0.0445659i \(-0.0141905\pi\)
−0.0445659 + 0.999006i \(0.514190\pi\)
\(824\) 6.59183 + 17.7245i 0.229637 + 0.617462i
\(825\) 0 0
\(826\) −3.48354 6.20756i −0.121208 0.215989i
\(827\) −7.98030 19.2661i −0.277502 0.669950i 0.722263 0.691619i \(-0.243102\pi\)
−0.999765 + 0.0216689i \(0.993102\pi\)
\(828\) 0 0
\(829\) −3.59585 1.48945i −0.124889 0.0517307i 0.319364 0.947632i \(-0.396531\pi\)
−0.444253 + 0.895901i \(0.646531\pi\)
\(830\) 25.9176 + 20.3950i 0.899613 + 0.707922i
\(831\) 0 0
\(832\) 35.0612 11.5960i 1.21553 0.402018i
\(833\) −22.1194 −0.766391
\(834\) 0 0
\(835\) −26.2818 10.8863i −0.909518 0.376735i
\(836\) −3.95549 + 0.956955i −0.136804 + 0.0330970i
\(837\) 0 0
\(838\) 7.90385 + 14.0844i 0.273034 + 0.486538i
\(839\) −13.8461 + 13.8461i −0.478020 + 0.478020i −0.904498 0.426478i \(-0.859754\pi\)
0.426478 + 0.904498i \(0.359754\pi\)
\(840\) 0 0
\(841\) 6.77318 + 6.77318i 0.233558 + 0.233558i
\(842\) 1.72505 6.13713i 0.0594492 0.211499i
\(843\) 0 0
\(844\) −19.2623 3.01630i −0.663037 0.103825i
\(845\) 5.87515 14.1839i 0.202111 0.487940i
\(846\) 0 0
\(847\) 4.68274i 0.160901i
\(848\) 12.8672 15.1728i 0.441861 0.521035i
\(849\) 0 0
\(850\) −0.960485 8.05470i −0.0329444 0.276274i
\(851\) −0.964543 + 2.32861i −0.0330641 + 0.0798239i
\(852\) 0 0
\(853\) 18.0597 7.48055i 0.618351 0.256129i −0.0514436 0.998676i \(-0.516382\pi\)
0.669794 + 0.742547i \(0.266382\pi\)
\(854\) 19.0034 + 5.34157i 0.650283 + 0.182785i
\(855\) 0 0
\(856\) −0.289121 + 7.88638i −0.00988196 + 0.269551i
\(857\) 6.35294 6.35294i 0.217012 0.217012i −0.590226 0.807238i \(-0.700961\pi\)
0.807238 + 0.590226i \(0.200961\pi\)
\(858\) 0 0
\(859\) 9.72800 + 23.4855i 0.331915 + 0.801314i 0.998440 + 0.0558315i \(0.0177810\pi\)
−0.666525 + 0.745483i \(0.732219\pi\)
\(860\) 5.31343 8.70489i 0.181186 0.296834i
\(861\) 0 0
\(862\) 14.8500 18.8711i 0.505793 0.642751i
\(863\) 0.0884535 0.00301099 0.00150550 0.999999i \(-0.499521\pi\)
0.00150550 + 0.999999i \(0.499521\pi\)
\(864\) 0 0
\(865\) −3.55008 −0.120706
\(866\) 14.8296 18.8452i 0.503931 0.640385i
\(867\) 0 0
\(868\) −1.88118 1.14826i −0.0638513 0.0389745i
\(869\) 26.3379 + 63.5854i 0.893453 + 2.15699i
\(870\) 0 0
\(871\) 12.0341 12.0341i 0.407761 0.407761i
\(872\) −17.4129 18.7382i −0.589676 0.634557i
\(873\) 0 0
\(874\) −1.30834 0.367755i −0.0442554 0.0124395i
\(875\) −10.5747 + 4.38018i −0.357490 + 0.148077i
\(876\) 0 0
\(877\) −4.24514 + 10.2487i −0.143348 + 0.346073i −0.979205 0.202875i \(-0.934971\pi\)
0.835857 + 0.548948i \(0.184971\pi\)
\(878\) −2.50065 20.9706i −0.0843928 0.707724i
\(879\) 0 0
\(880\) 28.1301 + 9.03127i 0.948265 + 0.304444i
\(881\) 23.9859i 0.808105i −0.914736 0.404052i \(-0.867601\pi\)
0.914736 0.404052i \(-0.132399\pi\)
\(882\) 0 0
\(883\) −7.74892 + 18.7075i −0.260772 + 0.629559i −0.998987 0.0450067i \(-0.985669\pi\)
0.738215 + 0.674566i \(0.235669\pi\)
\(884\) 5.16619 32.9916i 0.173758 1.10963i
\(885\) 0 0
\(886\) −6.31087 + 22.4518i −0.212018 + 0.754284i
\(887\) 36.4494 + 36.4494i 1.22385 + 1.22385i 0.966252 + 0.257600i \(0.0829315\pi\)
0.257600 + 0.966252i \(0.417068\pi\)
\(888\) 0 0
\(889\) −8.68550 + 8.68550i −0.291302 + 0.291302i
\(890\) −9.83627 17.5279i −0.329713 0.587538i
\(891\) 0 0
\(892\) 10.6368 + 43.9665i 0.356148 + 1.47211i
\(893\) −0.704611 0.291859i −0.0235789 0.00976670i
\(894\) 0 0
\(895\) 9.07646 0.303392
\(896\) −7.85842 7.17548i −0.262532 0.239716i
\(897\) 0 0
\(898\) 8.97096 + 7.05941i 0.299365 + 0.235576i
\(899\) 6.72293 + 2.78473i 0.224222 + 0.0928759i
\(900\) 0 0
\(901\) −6.88431 16.6202i −0.229350 0.553699i
\(902\) −6.53304 11.6417i −0.217526 0.387625i
\(903\) 0 0
\(904\) −30.2837 13.8647i −1.00722 0.461133i
\(905\) 2.65685 + 2.65685i 0.0883168 + 0.0883168i
\(906\) 0 0
\(907\) −38.2753 + 15.8541i −1.27091 + 0.526428i −0.913241 0.407421i \(-0.866428\pi\)
−0.357669 + 0.933848i \(0.616428\pi\)
\(908\) −3.18592 + 20.3455i −0.105729 + 0.675190i
\(909\) 0 0
\(910\) −11.2661 + 1.34343i −0.373467 + 0.0445341i
\(911\) 12.5214i 0.414851i 0.978251 + 0.207426i \(0.0665085\pi\)
−0.978251 + 0.207426i \(0.933492\pi\)
\(912\) 0 0
\(913\) 50.4497i 1.66964i
\(914\) 1.81947 + 15.2582i 0.0601826 + 0.504695i
\(915\) 0 0
\(916\) 27.5830 20.1141i 0.911367 0.664587i
\(917\) −6.13401 + 2.54079i −0.202563 + 0.0839043i
\(918\) 0 0
\(919\) 1.19513 + 1.19513i 0.0394238 + 0.0394238i 0.726544 0.687120i \(-0.241125\pi\)
−0.687120 + 0.726544i \(0.741125\pi\)
\(920\) 6.71627 + 7.22746i 0.221429 + 0.238282i
\(921\) 0 0
\(922\) −19.0206 + 10.6739i −0.626410 + 0.351527i
\(923\) 24.1369 + 58.2715i 0.794475 + 1.91803i
\(924\) 0 0
\(925\) 1.95604 + 0.810217i 0.0643141 + 0.0266398i
\(926\) −23.8957 + 30.3662i −0.785261 + 0.997894i
\(927\) 0 0
\(928\) 29.2994 + 19.3923i 0.961801 + 0.636585i
\(929\) −45.1410 −1.48103 −0.740514 0.672041i \(-0.765418\pi\)
−0.740514 + 0.672041i \(0.765418\pi\)
\(930\) 0 0
\(931\) 2.87599 + 1.19127i 0.0942566 + 0.0390424i
\(932\) 15.3974 25.2252i 0.504357 0.826279i
\(933\) 0 0
\(934\) −30.3124 + 17.0106i −0.991852 + 0.556605i
\(935\) 18.8910 18.8910i 0.617801 0.617801i
\(936\) 0 0
\(937\) 2.58002 + 2.58002i 0.0842857 + 0.0842857i 0.747993 0.663707i \(-0.231018\pi\)
−0.663707 + 0.747993i \(0.731018\pi\)
\(938\) −4.72120 1.32706i −0.154153 0.0433300i
\(939\) 0 0
\(940\) 3.26226 + 4.47363i 0.106403 + 0.145914i
\(941\) −2.24720 + 5.42523i −0.0732568 + 0.176857i −0.956266 0.292498i \(-0.905514\pi\)
0.883009 + 0.469355i \(0.155514\pi\)
\(942\) 0 0
\(943\) 4.45807i 0.145175i
\(944\) 16.3251 + 13.8444i 0.531336 + 0.450597i
\(945\) 0 0
\(946\) −15.4908 + 1.84721i −0.503650 + 0.0600579i
\(947\) −17.5640 + 42.4032i −0.570753 + 1.37792i 0.330162 + 0.943924i \(0.392897\pi\)
−0.900915 + 0.433996i \(0.857103\pi\)
\(948\) 0 0
\(949\) 45.5822 18.8808i 1.47966 0.612896i
\(950\) −0.308915 + 1.09901i −0.0100225 + 0.0356566i
\(951\) 0 0
\(952\) −9.01922 + 3.35430i −0.292315 + 0.108713i
\(953\) −14.8079 + 14.8079i −0.479673 + 0.479673i −0.905027 0.425354i \(-0.860150\pi\)
0.425354 + 0.905027i \(0.360150\pi\)
\(954\) 0 0
\(955\) 13.7194 + 33.1216i 0.443949 + 1.07179i
\(956\) −22.6920 + 5.48990i −0.733913 + 0.177556i
\(957\) 0 0
\(958\) 4.34718 + 3.42088i 0.140451 + 0.110524i
\(959\) 6.49290 0.209667
\(960\) 0 0
\(961\) −29.6274 −0.955723
\(962\) 6.84944 + 5.38995i 0.220835 + 0.173779i
\(963\) 0 0
\(964\) 26.8821 6.50360i 0.865813 0.209467i
\(965\) −12.7605 30.8066i −0.410775 0.991698i
\(966\) 0 0
\(967\) 24.8604 24.8604i 0.799455 0.799455i −0.183554 0.983010i \(-0.558760\pi\)
0.983010 + 0.183554i \(0.0587604\pi\)
\(968\) −4.90848 13.1982i −0.157764 0.424206i
\(969\) 0 0
\(970\) 4.35480 15.4928i 0.139824 0.497445i
\(971\) 23.3388 9.66725i 0.748978 0.310237i 0.0246533 0.999696i \(-0.492152\pi\)
0.724324 + 0.689459i \(0.242152\pi\)
\(972\) 0 0
\(973\) 4.59099 11.0836i 0.147180 0.355325i
\(974\) 16.1791 1.92928i 0.518411 0.0618181i
\(975\) 0 0
\(976\) −59.1598 + 4.86441i −1.89366 + 0.155706i
\(977\) 54.7057i 1.75019i −0.483952 0.875094i \(-0.660799\pi\)
0.483952 0.875094i \(-0.339201\pi\)
\(978\) 0 0
\(979\) −11.7660 + 28.4056i −0.376042 + 0.907846i
\(980\) −13.3154 18.2598i −0.425346 0.583289i
\(981\) 0 0
\(982\) 16.6352 + 4.67590i 0.530851 + 0.149214i
\(983\) 7.85315 + 7.85315i 0.250477 + 0.250477i 0.821166 0.570689i \(-0.193324\pi\)
−0.570689 + 0.821166i \(0.693324\pi\)
\(984\) 0 0
\(985\) −0.295389 + 0.295389i −0.00941188 + 0.00941188i
\(986\) 27.7073 15.5487i 0.882382 0.495172i
\(987\) 0 0
\(988\) −2.44853 + 4.01138i −0.0778980 + 0.127619i
\(989\) −4.81324 1.99371i −0.153052 0.0633963i
\(990\) 0 0
\(991\) −52.4878 −1.66733 −0.833665 0.552270i \(-0.813762\pi\)
−0.833665 + 0.552270i \(0.813762\pi\)
\(992\) 6.50567 + 1.26449i 0.206555 + 0.0401476i
\(993\) 0 0
\(994\) 11.2396 14.2831i 0.356498 0.453031i
\(995\) −28.7272 11.8992i −0.910715 0.377230i
\(996\) 0 0
\(997\) 12.8431 + 31.0060i 0.406745 + 0.981970i 0.985988 + 0.166815i \(0.0533483\pi\)
−0.579243 + 0.815155i \(0.696652\pi\)
\(998\) −39.9848 + 22.4386i −1.26570 + 0.710280i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 288.2.v.b.253.1 8
3.2 odd 2 32.2.g.b.29.2 yes 8
4.3 odd 2 1152.2.v.b.721.1 8
12.11 even 2 128.2.g.b.81.2 8
15.2 even 4 800.2.ba.d.349.1 8
15.8 even 4 800.2.ba.c.349.2 8
15.14 odd 2 800.2.y.b.701.1 8
24.5 odd 2 256.2.g.d.161.2 8
24.11 even 2 256.2.g.c.161.1 8
32.11 odd 8 1152.2.v.b.433.1 8
32.21 even 8 inner 288.2.v.b.181.1 8
48.5 odd 4 512.2.g.h.65.1 8
48.11 even 4 512.2.g.f.65.2 8
48.29 odd 4 512.2.g.e.65.2 8
48.35 even 4 512.2.g.g.65.1 8
96.5 odd 8 256.2.g.d.97.2 8
96.11 even 8 128.2.g.b.49.2 8
96.29 odd 8 512.2.g.h.449.1 8
96.35 even 8 512.2.g.f.449.2 8
96.53 odd 8 32.2.g.b.21.2 8
96.59 even 8 256.2.g.c.97.1 8
96.77 odd 8 512.2.g.e.449.2 8
96.83 even 8 512.2.g.g.449.1 8
192.11 even 16 4096.2.a.q.1.7 8
192.53 odd 16 4096.2.a.k.1.2 8
192.107 even 16 4096.2.a.q.1.2 8
192.149 odd 16 4096.2.a.k.1.7 8
480.53 even 8 800.2.ba.d.149.1 8
480.149 odd 8 800.2.y.b.501.1 8
480.437 even 8 800.2.ba.c.149.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
32.2.g.b.21.2 8 96.53 odd 8
32.2.g.b.29.2 yes 8 3.2 odd 2
128.2.g.b.49.2 8 96.11 even 8
128.2.g.b.81.2 8 12.11 even 2
256.2.g.c.97.1 8 96.59 even 8
256.2.g.c.161.1 8 24.11 even 2
256.2.g.d.97.2 8 96.5 odd 8
256.2.g.d.161.2 8 24.5 odd 2
288.2.v.b.181.1 8 32.21 even 8 inner
288.2.v.b.253.1 8 1.1 even 1 trivial
512.2.g.e.65.2 8 48.29 odd 4
512.2.g.e.449.2 8 96.77 odd 8
512.2.g.f.65.2 8 48.11 even 4
512.2.g.f.449.2 8 96.35 even 8
512.2.g.g.65.1 8 48.35 even 4
512.2.g.g.449.1 8 96.83 even 8
512.2.g.h.65.1 8 48.5 odd 4
512.2.g.h.449.1 8 96.29 odd 8
800.2.y.b.501.1 8 480.149 odd 8
800.2.y.b.701.1 8 15.14 odd 2
800.2.ba.c.149.2 8 480.437 even 8
800.2.ba.c.349.2 8 15.8 even 4
800.2.ba.d.149.1 8 480.53 even 8
800.2.ba.d.349.1 8 15.2 even 4
1152.2.v.b.433.1 8 32.11 odd 8
1152.2.v.b.721.1 8 4.3 odd 2
4096.2.a.k.1.2 8 192.53 odd 16
4096.2.a.k.1.7 8 192.149 odd 16
4096.2.a.q.1.2 8 192.107 even 16
4096.2.a.q.1.7 8 192.11 even 16