L(s) = 1 | − 84i·3-s − 82i·5-s − 456·7-s − 4.86e3·9-s + 2.52e3i·11-s + 1.07e4i·13-s − 6.88e3·15-s − 1.11e4·17-s + 4.12e3i·19-s + 3.83e4i·21-s + 8.17e4·23-s + 7.14e4·25-s + 2.25e5i·27-s − 9.97e4i·29-s + 4.04e4·31-s + ⋯ |
L(s) = 1 | − 1.79i·3-s − 0.293i·5-s − 0.502·7-s − 2.22·9-s + 0.571i·11-s + 1.36i·13-s − 0.526·15-s − 0.550·17-s + 0.137i·19-s + 0.902i·21-s + 1.40·23-s + 0.913·25-s + 2.20i·27-s − 0.759i·29-s + 0.244·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 256 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.707 + 0.707i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 256 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (0.707 + 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(4)\) |
\(\approx\) |
\(1.549272590\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.549272590\) |
\(L(\frac{9}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
good | 3 | \( 1 + 84iT - 2.18e3T^{2} \) |
| 5 | \( 1 + 82iT - 7.81e4T^{2} \) |
| 7 | \( 1 + 456T + 8.23e5T^{2} \) |
| 11 | \( 1 - 2.52e3iT - 1.94e7T^{2} \) |
| 13 | \( 1 - 1.07e4iT - 6.27e7T^{2} \) |
| 17 | \( 1 + 1.11e4T + 4.10e8T^{2} \) |
| 19 | \( 1 - 4.12e3iT - 8.93e8T^{2} \) |
| 23 | \( 1 - 8.17e4T + 3.40e9T^{2} \) |
| 29 | \( 1 + 9.97e4iT - 1.72e10T^{2} \) |
| 31 | \( 1 - 4.04e4T + 2.75e10T^{2} \) |
| 37 | \( 1 + 4.19e5iT - 9.49e10T^{2} \) |
| 41 | \( 1 + 1.41e5T + 1.94e11T^{2} \) |
| 43 | \( 1 - 6.90e5iT - 2.71e11T^{2} \) |
| 47 | \( 1 - 6.82e5T + 5.06e11T^{2} \) |
| 53 | \( 1 - 1.81e6iT - 1.17e12T^{2} \) |
| 59 | \( 1 - 9.66e5iT - 2.48e12T^{2} \) |
| 61 | \( 1 + 1.88e6iT - 3.14e12T^{2} \) |
| 67 | \( 1 - 2.96e6iT - 6.06e12T^{2} \) |
| 71 | \( 1 + 2.54e6T + 9.09e12T^{2} \) |
| 73 | \( 1 - 1.68e6T + 1.10e13T^{2} \) |
| 79 | \( 1 + 4.03e6T + 1.92e13T^{2} \) |
| 83 | \( 1 + 5.38e6iT - 2.71e13T^{2} \) |
| 89 | \( 1 - 6.47e6T + 4.42e13T^{2} \) |
| 97 | \( 1 + 6.06e6T + 8.07e13T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.97734890127892479495126572898, −9.365883977455520315836849266810, −8.656889447820584858065578686080, −7.41712254529445219031962533083, −6.83916982901611453655435057768, −5.99199671231005306230123201707, −4.53184309673845843615059793608, −2.80368740528986447017807180074, −1.79989325446240354791157743987, −0.790579660537015334073372346359,
0.49445813957090068385499906448, 2.93857860247985236165877282021, 3.40843528008567585308453970880, 4.77293247286325986846104780945, 5.52457963273437033508747688568, 6.77294091715555615425052614033, 8.388551218446734898895550144371, 9.076568408744682903115659674472, 10.11831912229091367840177474291, 10.66906969307949070777471613965