Properties

Label 2-2e8-8.5-c7-0-16
Degree $2$
Conductor $256$
Sign $0.707 + 0.707i$
Analytic cond. $79.9705$
Root an. cond. $8.94262$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 84i·3-s − 82i·5-s − 456·7-s − 4.86e3·9-s + 2.52e3i·11-s + 1.07e4i·13-s − 6.88e3·15-s − 1.11e4·17-s + 4.12e3i·19-s + 3.83e4i·21-s + 8.17e4·23-s + 7.14e4·25-s + 2.25e5i·27-s − 9.97e4i·29-s + 4.04e4·31-s + ⋯
L(s)  = 1  − 1.79i·3-s − 0.293i·5-s − 0.502·7-s − 2.22·9-s + 0.571i·11-s + 1.36i·13-s − 0.526·15-s − 0.550·17-s + 0.137i·19-s + 0.902i·21-s + 1.40·23-s + 0.913·25-s + 2.20i·27-s − 0.759i·29-s + 0.244·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 256 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.707 + 0.707i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 256 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (0.707 + 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(256\)    =    \(2^{8}\)
Sign: $0.707 + 0.707i$
Analytic conductor: \(79.9705\)
Root analytic conductor: \(8.94262\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{256} (129, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 256,\ (\ :7/2),\ 0.707 + 0.707i)\)

Particular Values

\(L(4)\) \(\approx\) \(1.549272590\)
\(L(\frac12)\) \(\approx\) \(1.549272590\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
good3 \( 1 + 84iT - 2.18e3T^{2} \)
5 \( 1 + 82iT - 7.81e4T^{2} \)
7 \( 1 + 456T + 8.23e5T^{2} \)
11 \( 1 - 2.52e3iT - 1.94e7T^{2} \)
13 \( 1 - 1.07e4iT - 6.27e7T^{2} \)
17 \( 1 + 1.11e4T + 4.10e8T^{2} \)
19 \( 1 - 4.12e3iT - 8.93e8T^{2} \)
23 \( 1 - 8.17e4T + 3.40e9T^{2} \)
29 \( 1 + 9.97e4iT - 1.72e10T^{2} \)
31 \( 1 - 4.04e4T + 2.75e10T^{2} \)
37 \( 1 + 4.19e5iT - 9.49e10T^{2} \)
41 \( 1 + 1.41e5T + 1.94e11T^{2} \)
43 \( 1 - 6.90e5iT - 2.71e11T^{2} \)
47 \( 1 - 6.82e5T + 5.06e11T^{2} \)
53 \( 1 - 1.81e6iT - 1.17e12T^{2} \)
59 \( 1 - 9.66e5iT - 2.48e12T^{2} \)
61 \( 1 + 1.88e6iT - 3.14e12T^{2} \)
67 \( 1 - 2.96e6iT - 6.06e12T^{2} \)
71 \( 1 + 2.54e6T + 9.09e12T^{2} \)
73 \( 1 - 1.68e6T + 1.10e13T^{2} \)
79 \( 1 + 4.03e6T + 1.92e13T^{2} \)
83 \( 1 + 5.38e6iT - 2.71e13T^{2} \)
89 \( 1 - 6.47e6T + 4.42e13T^{2} \)
97 \( 1 + 6.06e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.97734890127892479495126572898, −9.365883977455520315836849266810, −8.656889447820584858065578686080, −7.41712254529445219031962533083, −6.83916982901611453655435057768, −5.99199671231005306230123201707, −4.53184309673845843615059793608, −2.80368740528986447017807180074, −1.79989325446240354791157743987, −0.790579660537015334073372346359, 0.49445813957090068385499906448, 2.93857860247985236165877282021, 3.40843528008567585308453970880, 4.77293247286325986846104780945, 5.52457963273437033508747688568, 6.77294091715555615425052614033, 8.388551218446734898895550144371, 9.076568408744682903115659674472, 10.11831912229091367840177474291, 10.66906969307949070777471613965

Graph of the $Z$-function along the critical line