Properties

Label 256.8.b.c
Level $256$
Weight $8$
Character orbit 256.b
Analytic conductor $79.971$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [256,8,Mod(129,256)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(256, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("256.129");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 256 = 2^{8} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 256.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(79.9705665239\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 8)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2i\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 42 \beta q^{3} + 41 \beta q^{5} - 456 q^{7} - 4869 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 42 \beta q^{3} + 41 \beta q^{5} - 456 q^{7} - 4869 q^{9} - 1262 \beta q^{11} - 5389 \beta q^{13} - 6888 q^{15} - 11150 q^{17} - 2062 \beta q^{19} - 19152 \beta q^{21} + 81704 q^{23} + 71401 q^{25} - 112644 \beta q^{27} + 49899 \beta q^{29} + 40480 q^{31} + 212016 q^{33} - 18696 \beta q^{35} + 209721 \beta q^{37} + 905352 q^{39} - 141402 q^{41} - 345214 \beta q^{43} - 199629 \beta q^{45} + 682032 q^{47} - 615607 q^{49} - 468300 \beta q^{51} - 906559 \beta q^{53} + 206968 q^{55} + 346416 q^{57} - 483014 \beta q^{59} + 943835 \beta q^{61} + 2220264 q^{63} + 883796 q^{65} - 1482934 \beta q^{67} + 3431568 \beta q^{69} - 2548232 q^{71} + 1680326 q^{73} + 2998842 \beta q^{75} + 575472 \beta q^{77} - 4038064 q^{79} + 8275689 q^{81} + 2692882 \beta q^{83} - 457150 \beta q^{85} - 8383032 q^{87} + 6473046 q^{89} + 2457384 \beta q^{91} + 1700160 \beta q^{93} + 338168 q^{95} - 6065758 q^{97} + 6144678 \beta q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 912 q^{7} - 9738 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 912 q^{7} - 9738 q^{9} - 13776 q^{15} - 22300 q^{17} + 163408 q^{23} + 142802 q^{25} + 80960 q^{31} + 424032 q^{33} + 1810704 q^{39} - 282804 q^{41} + 1364064 q^{47} - 1231214 q^{49} + 413936 q^{55} + 692832 q^{57} + 4440528 q^{63} + 1767592 q^{65} - 5096464 q^{71} + 3360652 q^{73} - 8076128 q^{79} + 16551378 q^{81} - 16766064 q^{87} + 12946092 q^{89} + 676336 q^{95} - 12131516 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/256\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(255\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
129.1
1.00000i
1.00000i
0 84.0000i 0 82.0000i 0 −456.000 0 −4869.00 0
129.2 0 84.0000i 0 82.0000i 0 −456.000 0 −4869.00 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 256.8.b.c 2
4.b odd 2 1 256.8.b.e 2
8.b even 2 1 inner 256.8.b.c 2
8.d odd 2 1 256.8.b.e 2
16.e even 4 1 16.8.a.c 1
16.e even 4 1 64.8.a.a 1
16.f odd 4 1 8.8.a.a 1
16.f odd 4 1 64.8.a.g 1
48.i odd 4 1 144.8.a.g 1
48.i odd 4 1 576.8.a.k 1
48.k even 4 1 72.8.a.d 1
48.k even 4 1 576.8.a.j 1
80.i odd 4 1 400.8.c.b 2
80.j even 4 1 200.8.c.a 2
80.k odd 4 1 200.8.a.i 1
80.q even 4 1 400.8.a.b 1
80.s even 4 1 200.8.c.a 2
80.t odd 4 1 400.8.c.b 2
112.j even 4 1 392.8.a.d 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
8.8.a.a 1 16.f odd 4 1
16.8.a.c 1 16.e even 4 1
64.8.a.a 1 16.e even 4 1
64.8.a.g 1 16.f odd 4 1
72.8.a.d 1 48.k even 4 1
144.8.a.g 1 48.i odd 4 1
200.8.a.i 1 80.k odd 4 1
200.8.c.a 2 80.j even 4 1
200.8.c.a 2 80.s even 4 1
256.8.b.c 2 1.a even 1 1 trivial
256.8.b.c 2 8.b even 2 1 inner
256.8.b.e 2 4.b odd 2 1
256.8.b.e 2 8.d odd 2 1
392.8.a.d 1 112.j even 4 1
400.8.a.b 1 80.q even 4 1
400.8.c.b 2 80.i odd 4 1
400.8.c.b 2 80.t odd 4 1
576.8.a.j 1 48.k even 4 1
576.8.a.k 1 48.i odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{8}^{\mathrm{new}}(256, [\chi])\):

\( T_{3}^{2} + 7056 \) Copy content Toggle raw display
\( T_{7} + 456 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 7056 \) Copy content Toggle raw display
$5$ \( T^{2} + 6724 \) Copy content Toggle raw display
$7$ \( (T + 456)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 6370576 \) Copy content Toggle raw display
$13$ \( T^{2} + 116165284 \) Copy content Toggle raw display
$17$ \( (T + 11150)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 17007376 \) Copy content Toggle raw display
$23$ \( (T - 81704)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 9959640804 \) Copy content Toggle raw display
$31$ \( (T - 40480)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 175931591364 \) Copy content Toggle raw display
$41$ \( (T + 141402)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 476690823184 \) Copy content Toggle raw display
$47$ \( (T - 682032)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 3287396881924 \) Copy content Toggle raw display
$59$ \( T^{2} + 933210096784 \) Copy content Toggle raw display
$61$ \( T^{2} + 3563298028900 \) Copy content Toggle raw display
$67$ \( T^{2} + 8796372993424 \) Copy content Toggle raw display
$71$ \( (T + 2548232)^{2} \) Copy content Toggle raw display
$73$ \( (T - 1680326)^{2} \) Copy content Toggle raw display
$79$ \( (T + 4038064)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 29006453863696 \) Copy content Toggle raw display
$89$ \( (T - 6473046)^{2} \) Copy content Toggle raw display
$97$ \( (T + 6065758)^{2} \) Copy content Toggle raw display
show more
show less