Properties

Label 200.8.a.i
Level 200200
Weight 88
Character orbit 200.a
Self dual yes
Analytic conductor 62.47762.477
Analytic rank 00
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [200,8,Mod(1,200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("200.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: N N == 200=2352 200 = 2^{3} \cdot 5^{2}
Weight: k k == 8 8
Character orbit: [χ][\chi] == 200.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 62.477005096862.4770050968
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 8)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+84q3+456q7+4869q92524q11+10778q13+11150q17+4124q19+38304q2181704q23+225288q27+99798q2940480q31212016q33+419442q37+12289356q99+O(q100) q + 84 q^{3} + 456 q^{7} + 4869 q^{9} - 2524 q^{11} + 10778 q^{13} + 11150 q^{17} + 4124 q^{19} + 38304 q^{21} - 81704 q^{23} + 225288 q^{27} + 99798 q^{29} - 40480 q^{31} - 212016 q^{33} + 419442 q^{37}+ \cdots - 12289356 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
0 84.0000 0 0 0 456.000 0 4869.00 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
55 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 200.8.a.i 1
4.b odd 2 1 400.8.a.b 1
5.b even 2 1 8.8.a.a 1
5.c odd 4 2 200.8.c.a 2
15.d odd 2 1 72.8.a.d 1
20.d odd 2 1 16.8.a.c 1
20.e even 4 2 400.8.c.b 2
35.c odd 2 1 392.8.a.d 1
40.e odd 2 1 64.8.a.a 1
40.f even 2 1 64.8.a.g 1
60.h even 2 1 144.8.a.g 1
80.k odd 4 2 256.8.b.c 2
80.q even 4 2 256.8.b.e 2
120.i odd 2 1 576.8.a.j 1
120.m even 2 1 576.8.a.k 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
8.8.a.a 1 5.b even 2 1
16.8.a.c 1 20.d odd 2 1
64.8.a.a 1 40.e odd 2 1
64.8.a.g 1 40.f even 2 1
72.8.a.d 1 15.d odd 2 1
144.8.a.g 1 60.h even 2 1
200.8.a.i 1 1.a even 1 1 trivial
200.8.c.a 2 5.c odd 4 2
256.8.b.c 2 80.k odd 4 2
256.8.b.e 2 80.q even 4 2
392.8.a.d 1 35.c odd 2 1
400.8.a.b 1 4.b odd 2 1
400.8.c.b 2 20.e even 4 2
576.8.a.j 1 120.i odd 2 1
576.8.a.k 1 120.m even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T384 T_{3} - 84 acting on S8new(Γ0(200))S_{8}^{\mathrm{new}}(\Gamma_0(200)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T84 T - 84 Copy content Toggle raw display
55 T T Copy content Toggle raw display
77 T456 T - 456 Copy content Toggle raw display
1111 T+2524 T + 2524 Copy content Toggle raw display
1313 T10778 T - 10778 Copy content Toggle raw display
1717 T11150 T - 11150 Copy content Toggle raw display
1919 T4124 T - 4124 Copy content Toggle raw display
2323 T+81704 T + 81704 Copy content Toggle raw display
2929 T99798 T - 99798 Copy content Toggle raw display
3131 T+40480 T + 40480 Copy content Toggle raw display
3737 T419442 T - 419442 Copy content Toggle raw display
4141 T141402 T - 141402 Copy content Toggle raw display
4343 T690428 T - 690428 Copy content Toggle raw display
4747 T682032 T - 682032 Copy content Toggle raw display
5353 T+1813118 T + 1813118 Copy content Toggle raw display
5959 T+966028 T + 966028 Copy content Toggle raw display
6161 T1887670 T - 1887670 Copy content Toggle raw display
6767 T+2965868 T + 2965868 Copy content Toggle raw display
7171 T+2548232 T + 2548232 Copy content Toggle raw display
7373 T1680326 T - 1680326 Copy content Toggle raw display
7979 T4038064 T - 4038064 Copy content Toggle raw display
8383 T5385764 T - 5385764 Copy content Toggle raw display
8989 T+6473046 T + 6473046 Copy content Toggle raw display
9797 T6065758 T - 6065758 Copy content Toggle raw display
show more
show less