L(s) = 1 | − 58i·5-s + 2.18e3·9-s + 8.89e3i·13-s − 4.00e4·17-s + 7.47e4·25-s − 2.33e5i·29-s + 5.63e5i·37-s − 9.53e3·41-s − 1.26e5i·45-s − 8.23e5·49-s − 7.98e5i·53-s + 3.50e6i·61-s + 5.16e5·65-s − 3.91e6·73-s + 4.78e6·81-s + ⋯ |
L(s) = 1 | − 0.207i·5-s + 9-s + 1.12i·13-s − 1.97·17-s + 0.956·25-s − 1.77i·29-s + 1.83i·37-s − 0.0215·41-s − 0.207i·45-s − 49-s − 0.736i·53-s + 1.97i·61-s + 0.233·65-s − 1.17·73-s + 81-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 256 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.707 - 0.707i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 256 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (-0.707 - 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(4)\) |
\(\approx\) |
\(0.8588077309\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8588077309\) |
\(L(\frac{9}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
good | 3 | \( 1 - 2.18e3T^{2} \) |
| 5 | \( 1 + 58iT - 7.81e4T^{2} \) |
| 7 | \( 1 + 8.23e5T^{2} \) |
| 11 | \( 1 - 1.94e7T^{2} \) |
| 13 | \( 1 - 8.89e3iT - 6.27e7T^{2} \) |
| 17 | \( 1 + 4.00e4T + 4.10e8T^{2} \) |
| 19 | \( 1 - 8.93e8T^{2} \) |
| 23 | \( 1 + 3.40e9T^{2} \) |
| 29 | \( 1 + 2.33e5iT - 1.72e10T^{2} \) |
| 31 | \( 1 + 2.75e10T^{2} \) |
| 37 | \( 1 - 5.63e5iT - 9.49e10T^{2} \) |
| 41 | \( 1 + 9.53e3T + 1.94e11T^{2} \) |
| 43 | \( 1 - 2.71e11T^{2} \) |
| 47 | \( 1 + 5.06e11T^{2} \) |
| 53 | \( 1 + 7.98e5iT - 1.17e12T^{2} \) |
| 59 | \( 1 - 2.48e12T^{2} \) |
| 61 | \( 1 - 3.50e6iT - 3.14e12T^{2} \) |
| 67 | \( 1 - 6.06e12T^{2} \) |
| 71 | \( 1 + 9.09e12T^{2} \) |
| 73 | \( 1 + 3.91e6T + 1.10e13T^{2} \) |
| 79 | \( 1 + 1.92e13T^{2} \) |
| 83 | \( 1 - 2.71e13T^{2} \) |
| 89 | \( 1 + 9.24e6T + 4.42e13T^{2} \) |
| 97 | \( 1 + 1.75e7T + 8.07e13T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.20255807738571982125331653307, −10.10120348455262132812530448503, −9.229796821030971709167218716401, −8.323826884162768501970937251353, −7.01468541366574405450022340293, −6.38757839404935632178326071947, −4.73182339802749230894809410282, −4.14090996317143924029891382775, −2.43809156404570826930909614831, −1.32489436017951333899372613098,
0.19462660925242371691595585269, 1.59889341212149281161137643746, 2.90568590634306187181472596953, 4.19144476908664730311459225371, 5.22514309247016007453366243162, 6.59003793280927384686564897775, 7.31380105152670964941081467558, 8.527168978966713563428536029372, 9.441281789637447849265232830041, 10.62613301583465156320378916628