Properties

Label 2-2e8-8.5-c7-0-5
Degree $2$
Conductor $256$
Sign $-0.707 - 0.707i$
Analytic cond. $79.9705$
Root an. cond. $8.94262$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 58i·5-s + 2.18e3·9-s + 8.89e3i·13-s − 4.00e4·17-s + 7.47e4·25-s − 2.33e5i·29-s + 5.63e5i·37-s − 9.53e3·41-s − 1.26e5i·45-s − 8.23e5·49-s − 7.98e5i·53-s + 3.50e6i·61-s + 5.16e5·65-s − 3.91e6·73-s + 4.78e6·81-s + ⋯
L(s)  = 1  − 0.207i·5-s + 9-s + 1.12i·13-s − 1.97·17-s + 0.956·25-s − 1.77i·29-s + 1.83i·37-s − 0.0215·41-s − 0.207i·45-s − 49-s − 0.736i·53-s + 1.97i·61-s + 0.233·65-s − 1.17·73-s + 81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 256 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.707 - 0.707i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 256 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (-0.707 - 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(256\)    =    \(2^{8}\)
Sign: $-0.707 - 0.707i$
Analytic conductor: \(79.9705\)
Root analytic conductor: \(8.94262\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{256} (129, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 256,\ (\ :7/2),\ -0.707 - 0.707i)\)

Particular Values

\(L(4)\) \(\approx\) \(0.8588077309\)
\(L(\frac12)\) \(\approx\) \(0.8588077309\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
good3 \( 1 - 2.18e3T^{2} \)
5 \( 1 + 58iT - 7.81e4T^{2} \)
7 \( 1 + 8.23e5T^{2} \)
11 \( 1 - 1.94e7T^{2} \)
13 \( 1 - 8.89e3iT - 6.27e7T^{2} \)
17 \( 1 + 4.00e4T + 4.10e8T^{2} \)
19 \( 1 - 8.93e8T^{2} \)
23 \( 1 + 3.40e9T^{2} \)
29 \( 1 + 2.33e5iT - 1.72e10T^{2} \)
31 \( 1 + 2.75e10T^{2} \)
37 \( 1 - 5.63e5iT - 9.49e10T^{2} \)
41 \( 1 + 9.53e3T + 1.94e11T^{2} \)
43 \( 1 - 2.71e11T^{2} \)
47 \( 1 + 5.06e11T^{2} \)
53 \( 1 + 7.98e5iT - 1.17e12T^{2} \)
59 \( 1 - 2.48e12T^{2} \)
61 \( 1 - 3.50e6iT - 3.14e12T^{2} \)
67 \( 1 - 6.06e12T^{2} \)
71 \( 1 + 9.09e12T^{2} \)
73 \( 1 + 3.91e6T + 1.10e13T^{2} \)
79 \( 1 + 1.92e13T^{2} \)
83 \( 1 - 2.71e13T^{2} \)
89 \( 1 + 9.24e6T + 4.42e13T^{2} \)
97 \( 1 + 1.75e7T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.20255807738571982125331653307, −10.10120348455262132812530448503, −9.229796821030971709167218716401, −8.323826884162768501970937251353, −7.01468541366574405450022340293, −6.38757839404935632178326071947, −4.73182339802749230894809410282, −4.14090996317143924029891382775, −2.43809156404570826930909614831, −1.32489436017951333899372613098, 0.19462660925242371691595585269, 1.59889341212149281161137643746, 2.90568590634306187181472596953, 4.19144476908664730311459225371, 5.22514309247016007453366243162, 6.59003793280927384686564897775, 7.31380105152670964941081467558, 8.527168978966713563428536029372, 9.441281789637447849265232830041, 10.62613301583465156320378916628

Graph of the $Z$-function along the critical line