Properties

Label 256.8.b.d
Level 256256
Weight 88
Character orbit 256.b
Analytic conductor 79.97179.971
Analytic rank 00
Dimension 22
CM discriminant -4
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [256,8,Mod(129,256)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(256, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("256.129");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: N N == 256=28 256 = 2^{8}
Weight: k k == 8 8
Character orbit: [χ][\chi] == 256.b (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 79.970566523979.9705665239
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 32)
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=2i\beta = 2i. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+29βq5+2187q94449βq1340094q17+74761q25+116615βq29281987βq379530q41+63423βq45823543q49+399301βq531752665βq61+17567406q97+O(q100) q + 29 \beta q^{5} + 2187 q^{9} - 4449 \beta q^{13} - 40094 q^{17} + 74761 q^{25} + 116615 \beta q^{29} - 281987 \beta q^{37} - 9530 q^{41} + 63423 \beta q^{45} - 823543 q^{49} + 399301 \beta q^{53} - 1752665 \beta q^{61} + \cdots - 17567406 q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+4374q980188q17+149522q2519060q411647086q49+1032168q657834836q73+9565938q8118492340q8935134812q97+O(q100) 2 q + 4374 q^{9} - 80188 q^{17} + 149522 q^{25} - 19060 q^{41} - 1647086 q^{49} + 1032168 q^{65} - 7834836 q^{73} + 9565938 q^{81} - 18492340 q^{89} - 35134812 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/256Z)×\left(\mathbb{Z}/256\mathbb{Z}\right)^\times.

nn 55 255255
χ(n)\chi(n) 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
129.1
1.00000i
1.00000i
0 0 0 58.0000i 0 0 0 2187.00 0
129.2 0 0 0 58.0000i 0 0 0 2187.00 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by Q(1)\Q(\sqrt{-1})
8.b even 2 1 inner
8.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 256.8.b.d 2
4.b odd 2 1 CM 256.8.b.d 2
8.b even 2 1 inner 256.8.b.d 2
8.d odd 2 1 inner 256.8.b.d 2
16.e even 4 1 32.8.a.a 1
16.e even 4 1 64.8.a.d 1
16.f odd 4 1 32.8.a.a 1
16.f odd 4 1 64.8.a.d 1
48.i odd 4 1 288.8.a.b 1
48.i odd 4 1 576.8.a.n 1
48.k even 4 1 288.8.a.b 1
48.k even 4 1 576.8.a.n 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
32.8.a.a 1 16.e even 4 1
32.8.a.a 1 16.f odd 4 1
64.8.a.d 1 16.e even 4 1
64.8.a.d 1 16.f odd 4 1
256.8.b.d 2 1.a even 1 1 trivial
256.8.b.d 2 4.b odd 2 1 CM
256.8.b.d 2 8.b even 2 1 inner
256.8.b.d 2 8.d odd 2 1 inner
288.8.a.b 1 48.i odd 4 1
288.8.a.b 1 48.k even 4 1
576.8.a.n 1 48.i odd 4 1
576.8.a.n 1 48.k even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S8new(256,[χ])S_{8}^{\mathrm{new}}(256, [\chi]):

T3 T_{3} Copy content Toggle raw display
T7 T_{7} Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T2+3364 T^{2} + 3364 Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 T2 T^{2} Copy content Toggle raw display
1313 T2+79174404 T^{2} + 79174404 Copy content Toggle raw display
1717 (T+40094)2 (T + 40094)^{2} Copy content Toggle raw display
1919 T2 T^{2} Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 T2+54396232900 T^{2} + 54396232900 Copy content Toggle raw display
3131 T2 T^{2} Copy content Toggle raw display
3737 T2+318066672676 T^{2} + 318066672676 Copy content Toggle raw display
4141 (T+9530)2 (T + 9530)^{2} Copy content Toggle raw display
4343 T2 T^{2} Copy content Toggle raw display
4747 T2 T^{2} Copy content Toggle raw display
5353 T2+637765154404 T^{2} + 637765154404 Copy content Toggle raw display
5959 T2 T^{2} Copy content Toggle raw display
6161 T2+12287338408900 T^{2} + 12287338408900 Copy content Toggle raw display
6767 T2 T^{2} Copy content Toggle raw display
7171 T2 T^{2} Copy content Toggle raw display
7373 (T+3917418)2 (T + 3917418)^{2} Copy content Toggle raw display
7979 T2 T^{2} Copy content Toggle raw display
8383 T2 T^{2} Copy content Toggle raw display
8989 (T+9246170)2 (T + 9246170)^{2} Copy content Toggle raw display
9797 (T+17567406)2 (T + 17567406)^{2} Copy content Toggle raw display
show more
show less