L(s) = 1 | + 0.949·3-s − 3.85i·7-s − 2.09·9-s − 0.589i·11-s + (−1.38 − 3.32i)13-s + 3.66·17-s + 5.94i·19-s − 3.66i·21-s − 3.51·23-s − 4.83·27-s − 5.33·29-s − 8.71i·31-s − 0.559i·33-s − 1.85i·37-s + (−1.31 − 3.15i)39-s + ⋯ |
L(s) = 1 | + 0.547·3-s − 1.45i·7-s − 0.699·9-s − 0.177i·11-s + (−0.384 − 0.922i)13-s + 0.887·17-s + 1.36i·19-s − 0.798i·21-s − 0.733·23-s − 0.931·27-s − 0.991·29-s − 1.56i·31-s − 0.0974i·33-s − 0.305i·37-s + (−0.210 − 0.505i)39-s + ⋯ |
Λ(s)=(=(2600s/2ΓC(s)L(s)(−0.922+0.384i)Λ(2−s)
Λ(s)=(=(2600s/2ΓC(s+1/2)L(s)(−0.922+0.384i)Λ(1−s)
Degree: |
2 |
Conductor: |
2600
= 23⋅52⋅13
|
Sign: |
−0.922+0.384i
|
Analytic conductor: |
20.7611 |
Root analytic conductor: |
4.55643 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2600(2001,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2600, ( :1/2), −0.922+0.384i)
|
Particular Values
L(1) |
≈ |
0.9603929501 |
L(21) |
≈ |
0.9603929501 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 13 | 1+(1.38+3.32i)T |
good | 3 | 1−0.949T+3T2 |
| 7 | 1+3.85iT−7T2 |
| 11 | 1+0.589iT−11T2 |
| 17 | 1−3.66T+17T2 |
| 19 | 1−5.94iT−19T2 |
| 23 | 1+3.51T+23T2 |
| 29 | 1+5.33T+29T2 |
| 31 | 1+8.71iT−31T2 |
| 37 | 1+1.85iT−37T2 |
| 41 | 1−4.63iT−41T2 |
| 43 | 1−6.30T+43T2 |
| 47 | 1−3.85iT−47T2 |
| 53 | 1+10.7T+53T2 |
| 59 | 1+10.3iT−59T2 |
| 61 | 1+13.4T+61T2 |
| 67 | 1−4.09iT−67T2 |
| 71 | 1−5.34iT−71T2 |
| 73 | 1+6.09iT−73T2 |
| 79 | 1+11.1T+79T2 |
| 83 | 1−8.77iT−83T2 |
| 89 | 1+0.413iT−89T2 |
| 97 | 1+8.45iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.198465932858962198663237580035, −7.87242420321189745966847755143, −7.36376985018316724279367243017, −6.06806236203967602069074025461, −5.61119758956842401658096704407, −4.33454757795301282537386655016, −3.63844329166586592136012323717, −2.90551638609907472071121191613, −1.60015709880850443246246656042, −0.27186865707895990728374793173,
1.78857750638616321217703597728, 2.61122089702861409736209211725, 3.30601151167861648601106398165, 4.53830469092636401313926339956, 5.39685056421901802658329815988, 6.01181537977732132483028712669, 6.98904893922557594997691441322, 7.79461102340777390680649290739, 8.662816841802284282220294918761, 9.108103923735082830078603907463