Properties

Label 2600.2.k.f
Level $2600$
Weight $2$
Character orbit 2600.k
Analytic conductor $20.761$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2600,2,Mod(2001,2600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2600, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2600.2001");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2600 = 2^{3} \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2600.k (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.7611045255\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 60x^{16} + 1134x^{12} + 6924x^{8} + 3545x^{4} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{30} \)
Twist minimal: no (minimal twist has level 520)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{19}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{12} q^{3} + \beta_{9} q^{7} + (\beta_1 + 1) q^{9} + \beta_{18} q^{11} + \beta_{15} q^{13} + (\beta_{17} - \beta_{12}) q^{17} + (\beta_{19} + \beta_{14} + \beta_{8}) q^{19} - \beta_{19} q^{21}+ \cdots + ( - \beta_{19} + 2 \beta_{18} + \cdots + \beta_{8}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 16 q^{9} - 16 q^{29} + 24 q^{39} - 24 q^{49} - 60 q^{51} - 32 q^{61} + 24 q^{69} - 56 q^{79} + 44 q^{81} + 4 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{20} + 60x^{16} + 1134x^{12} + 6924x^{8} + 3545x^{4} + 64 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 411\nu^{16} + 25181\nu^{12} + 501937\nu^{8} + 3176491\nu^{4} - 1179284 ) / 810196 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -1102\nu^{18} - 59139\nu^{14} - 881097\nu^{10} - 1813185\nu^{6} + 22790499\nu^{2} ) / 1620392 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 1233\nu^{16} + 75543\nu^{12} + 1505811\nu^{8} + 10339669\nu^{4} + 6994696 ) / 810196 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 4055\nu^{16} + 246469\nu^{12} + 4699877\nu^{8} + 28189727\nu^{4} + 5860080 ) / 1620392 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 5971\nu^{16} + 344145\nu^{12} + 6136961\nu^{8} + 34182331\nu^{4} + 8413200 ) / 1620392 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 788 \nu^{19} + 2369 \nu^{17} + 50743 \nu^{15} + 134301 \nu^{13} + 1075207 \nu^{11} + \cdots - 1721336 \nu ) / 3240784 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 5767\nu^{18} + 346431\nu^{14} + 6564959\nu^{10} + 40432645\nu^{6} + 24430702\nu^{2} ) / 1620392 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 5521 \nu^{19} - 6013 \nu^{17} + 337273 \nu^{15} - 355589 \nu^{13} + 6616403 \nu^{11} + \cdots + 6834912 \nu ) / 3240784 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( -14212\nu^{18} - 853487\nu^{14} - 16161429\nu^{10} - 99088269\nu^{6} - 51538947\nu^{2} ) / 1620392 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 18335\nu^{18} + 1099194\nu^{14} + 20718640\nu^{10} + 125194558\nu^{6} + 53140121\nu^{2} ) / 1620392 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 16267 \nu^{19} + 3644 \nu^{17} + 979392 \nu^{15} + 221288 \nu^{13} + 18671114 \nu^{11} + \cdots - 11595144 \nu ) / 3240784 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( 41403 \nu^{19} - 4466 \nu^{17} + 2484918 \nu^{15} - 271650 \nu^{13} + 46978476 \nu^{11} + \cdots - 20074520 \nu ) / 6481568 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( 42979 \nu^{19} - 272 \nu^{17} + 2586404 \nu^{15} + 3048 \nu^{13} + 49128890 \nu^{11} + \cdots + 23517192 \nu ) / 6481568 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( 39827 \nu^{19} + 9204 \nu^{17} + 2383432 \nu^{15} + 540252 \nu^{13} + 44828062 \nu^{11} + \cdots + 16631848 \nu ) / 6481568 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( - 37526 \nu^{19} + 21492 \nu^{18} + 7657 \nu^{17} - 2248369 \nu^{15} + 1284238 \nu^{14} + \cdots + 15994616 \nu ) / 3240784 \) Copy content Toggle raw display
\(\beta_{16}\)\(=\) \( ( 37526 \nu^{19} + 21492 \nu^{18} - 7657 \nu^{17} + 2248369 \nu^{15} + 1284238 \nu^{14} + \cdots - 15994616 \nu ) / 3240784 \) Copy content Toggle raw display
\(\beta_{17}\)\(=\) \( ( - 69039 \nu^{19} + 9301 \nu^{17} - 4141149 \nu^{15} + 557037 \nu^{13} - 78226127 \nu^{11} + \cdots + 32342576 \nu ) / 3240784 \) Copy content Toggle raw display
\(\beta_{18}\)\(=\) \( ( - 80573 \nu^{19} - 9301 \nu^{17} - 4834011 \nu^{15} - 557037 \nu^{13} - 91356045 \nu^{11} + \cdots - 38824144 \nu ) / 3240784 \) Copy content Toggle raw display
\(\beta_{19}\)\(=\) \( ( - 179481 \nu^{19} - 23068 \nu^{17} - 10767216 \nu^{15} - 1385724 \nu^{13} - 203430730 \nu^{11} + \cdots - 84759672 \nu ) / 6481568 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( 2\beta_{19} - 2\beta_{18} - \beta_{17} - \beta_{16} + \beta_{15} + \beta_{14} + \beta_{13} - \beta_{11} - \beta_{6} ) / 8 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{16} - \beta_{15} + \beta_{9} + 6\beta_{7} - \beta_{2} ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 8 \beta_{19} - 8 \beta_{18} + 5 \beta_{17} + 5 \beta_{16} - 5 \beta_{15} + \beta_{14} + \cdots + 5 \beta_{6} ) / 8 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{3} - 3\beta _1 - 13 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( - 34 \beta_{19} + 38 \beta_{18} + 21 \beta_{17} + 25 \beta_{16} - 25 \beta_{15} + 7 \beta_{14} + \cdots + 29 \beta_{6} ) / 8 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 33\beta_{16} + 33\beta_{15} + 4\beta_{10} + 3\beta_{9} - 122\beta_{7} + 33\beta_{2} ) / 4 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( - 152 \beta_{19} + 188 \beta_{18} - 89 \beta_{17} - 125 \beta_{16} + 125 \beta_{15} + \cdots - 161 \beta_{6} ) / 8 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( \beta_{5} - 11\beta_{4} - 14\beta_{3} + 89\beta _1 + 285 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( 706 \beta_{19} - 954 \beta_{18} - 385 \beta_{17} - 633 \beta_{16} + 633 \beta_{15} + \cdots - 865 \beta_{6} ) / 8 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( -925\beta_{16} - 925\beta_{15} - 344\beta_{10} - 563\beta_{9} + 2966\beta_{7} - 981\beta_{2} ) / 4 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( 3384 \beta_{19} - 4928 \beta_{18} + 1701 \beta_{17} + 3245 \beta_{16} - 3245 \beta_{15} + \cdots + 4565 \beta_{6} ) / 8 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( -128\beta_{5} + 586\beta_{4} + 194\beta_{3} - 2543\beta _1 - 6831 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( ( - 16642 \beta_{19} + 25774 \beta_{18} + 7669 \beta_{17} + 16801 \beta_{16} - 16801 \beta_{15} + \cdots + 23885 \beta_{6} ) / 8 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( ( 25173\beta_{16} + 25173\beta_{15} + 14844\beta_{10} + 23375\beta_{9} - 77850\beta_{7} + 29053\beta_{2} ) / 4 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( ( - 83528 \beta_{19} + 135956 \beta_{18} - 35241 \beta_{17} - 87669 \beta_{16} + 87669 \beta_{15} + \cdots - 124577 \beta_{6} ) / 8 \) Copy content Toggle raw display
\(\nu^{16}\)\(=\) \( 6621\beta_{5} - 22469\beta_{4} - 2517\beta_{3} + 72269\beta _1 + 173803 \) Copy content Toggle raw display
\(\nu^{17}\)\(=\) \( ( 425922 \beta_{19} - 721346 \beta_{18} - 164849 \beta_{17} - 460273 \beta_{16} + 460273 \beta_{15} + \cdots - 649761 \beta_{6} ) / 8 \) Copy content Toggle raw display
\(\nu^{18}\)\(=\) \( ( - 686313 \beta_{16} - 686313 \beta_{15} - 528144 \beta_{10} - 788535 \beta_{9} + \cdots - 855641 \beta_{2} ) / 4 \) Copy content Toggle raw display
\(\nu^{19}\)\(=\) \( ( 2198312 \beta_{19} - 3842488 \beta_{18} + 783973 \beta_{17} + 2428149 \beta_{16} + \cdots + 3395013 \beta_{6} ) / 8 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2600\mathbb{Z}\right)^\times\).

\(n\) \(1301\) \(1601\) \(1951\) \(1977\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2001.1
−1.63982 1.63982i
−1.63982 + 1.63982i
1.47826 1.47826i
1.47826 + 1.47826i
0.261614 + 0.261614i
0.261614 0.261614i
1.29975 1.29975i
1.29975 + 1.29975i
0.606602 + 0.606602i
0.606602 0.606602i
−0.606602 0.606602i
−0.606602 + 0.606602i
−1.29975 + 1.29975i
−1.29975 1.29975i
−0.261614 0.261614i
−0.261614 + 0.261614i
−1.47826 + 1.47826i
−1.47826 1.47826i
1.63982 + 1.63982i
1.63982 1.63982i
0 −3.22659 0 0 0 1.65488i 0 7.41088 0
2001.2 0 −3.22659 0 0 0 1.65488i 0 7.41088 0
2001.3 0 −2.14926 0 0 0 2.12171i 0 1.61930 0
2001.4 0 −2.14926 0 0 0 2.12171i 0 1.61930 0
2001.5 0 −1.57201 0 0 0 4.19743i 0 −0.528799 0
2001.6 0 −1.57201 0 0 0 4.19743i 0 −0.528799 0
2001.7 0 −0.949078 0 0 0 3.85660i 0 −2.09925 0
2001.8 0 −0.949078 0 0 0 3.85660i 0 −2.09925 0
2001.9 0 −0.773218 0 0 0 1.12600i 0 −2.40213 0
2001.10 0 −0.773218 0 0 0 1.12600i 0 −2.40213 0
2001.11 0 0.773218 0 0 0 1.12600i 0 −2.40213 0
2001.12 0 0.773218 0 0 0 1.12600i 0 −2.40213 0
2001.13 0 0.949078 0 0 0 3.85660i 0 −2.09925 0
2001.14 0 0.949078 0 0 0 3.85660i 0 −2.09925 0
2001.15 0 1.57201 0 0 0 4.19743i 0 −0.528799 0
2001.16 0 1.57201 0 0 0 4.19743i 0 −0.528799 0
2001.17 0 2.14926 0 0 0 2.12171i 0 1.61930 0
2001.18 0 2.14926 0 0 0 2.12171i 0 1.61930 0
2001.19 0 3.22659 0 0 0 1.65488i 0 7.41088 0
2001.20 0 3.22659 0 0 0 1.65488i 0 7.41088 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 2001.20
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
13.b even 2 1 inner
65.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2600.2.k.f 20
5.b even 2 1 inner 2600.2.k.f 20
5.c odd 4 1 520.2.f.a 10
5.c odd 4 1 520.2.f.b yes 10
13.b even 2 1 inner 2600.2.k.f 20
20.e even 4 1 1040.2.f.f 10
20.e even 4 1 1040.2.f.g 10
65.d even 2 1 inner 2600.2.k.f 20
65.h odd 4 1 520.2.f.a 10
65.h odd 4 1 520.2.f.b yes 10
260.p even 4 1 1040.2.f.f 10
260.p even 4 1 1040.2.f.g 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
520.2.f.a 10 5.c odd 4 1
520.2.f.a 10 65.h odd 4 1
520.2.f.b yes 10 5.c odd 4 1
520.2.f.b yes 10 65.h odd 4 1
1040.2.f.f 10 20.e even 4 1
1040.2.f.f 10 260.p even 4 1
1040.2.f.g 10 20.e even 4 1
1040.2.f.g 10 260.p even 4 1
2600.2.k.f 20 1.a even 1 1 trivial
2600.2.k.f 20 5.b even 2 1 inner
2600.2.k.f 20 13.b even 2 1 inner
2600.2.k.f 20 65.d even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{10} - 19T_{3}^{8} + 112T_{3}^{6} - 256T_{3}^{4} + 224T_{3}^{2} - 64 \) acting on \(S_{2}^{\mathrm{new}}(2600, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{20} \) Copy content Toggle raw display
$3$ \( (T^{10} - 19 T^{8} + \cdots - 64)^{2} \) Copy content Toggle raw display
$5$ \( T^{20} \) Copy content Toggle raw display
$7$ \( (T^{10} + 41 T^{8} + \cdots + 4096)^{2} \) Copy content Toggle raw display
$11$ \( (T^{10} + 64 T^{8} + \cdots + 1024)^{2} \) Copy content Toggle raw display
$13$ \( T^{20} + \cdots + 137858491849 \) Copy content Toggle raw display
$17$ \( (T^{10} - 107 T^{8} + \cdots - 262144)^{2} \) Copy content Toggle raw display
$19$ \( (T^{10} + 92 T^{8} + \cdots + 256)^{2} \) Copy content Toggle raw display
$23$ \( (T^{10} - 44 T^{8} + \cdots - 256)^{2} \) Copy content Toggle raw display
$29$ \( (T^{5} + 4 T^{4} - 56 T^{3} + \cdots + 64)^{4} \) Copy content Toggle raw display
$31$ \( (T^{10} + 108 T^{8} + \cdots + 256)^{2} \) Copy content Toggle raw display
$37$ \( (T^{10} + 65 T^{8} + \cdots + 256)^{2} \) Copy content Toggle raw display
$41$ \( (T^{10} + 208 T^{8} + \cdots + 4194304)^{2} \) Copy content Toggle raw display
$43$ \( (T^{10} - 211 T^{8} + \cdots - 40246336)^{2} \) Copy content Toggle raw display
$47$ \( (T^{10} + 41 T^{8} + \cdots + 4096)^{2} \) Copy content Toggle raw display
$53$ \( (T^{10} - 364 T^{8} + \cdots - 294191104)^{2} \) Copy content Toggle raw display
$59$ \( (T^{10} + 316 T^{8} + \cdots + 59228416)^{2} \) Copy content Toggle raw display
$61$ \( (T^{5} + 8 T^{4} + \cdots + 128)^{4} \) Copy content Toggle raw display
$67$ \( (T^{10} + 224 T^{8} + \cdots + 110166016)^{2} \) Copy content Toggle raw display
$71$ \( (T^{10} + 475 T^{8} + \cdots + 583319104)^{2} \) Copy content Toggle raw display
$73$ \( (T^{10} + 212 T^{8} + \cdots + 45589504)^{2} \) Copy content Toggle raw display
$79$ \( (T^{5} + 14 T^{4} + \cdots + 83968)^{4} \) Copy content Toggle raw display
$83$ \( (T^{10} + 628 T^{8} + \cdots + 17618845696)^{2} \) Copy content Toggle raw display
$89$ \( (T^{10} + 524 T^{8} + \cdots + 16777216)^{2} \) Copy content Toggle raw display
$97$ \( (T^{10} + 464 T^{8} + \cdots + 22429696)^{2} \) Copy content Toggle raw display
show more
show less