Properties

Label 2600.2.k.f
Level 26002600
Weight 22
Character orbit 2600.k
Analytic conductor 20.76120.761
Analytic rank 00
Dimension 2020
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2600,2,Mod(2001,2600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2600, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2600.2001");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 2600=235213 2600 = 2^{3} \cdot 5^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2600.k (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 20.761104525520.7611045255
Analytic rank: 00
Dimension: 2020
Coefficient field: Q[x]/(x20+)\mathbb{Q}[x]/(x^{20} + \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x20+60x16+1134x12+6924x8+3545x4+64 x^{20} + 60x^{16} + 1134x^{12} + 6924x^{8} + 3545x^{4} + 64 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 230 2^{30}
Twist minimal: no (minimal twist has level 520)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β191,\beta_1,\ldots,\beta_{19} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β12q3+β9q7+(β1+1)q9+β18q11+β15q13+(β17β12)q17+(β19+β14+β8)q19β19q21++(β19+2β18++β8)q99+O(q100) q + \beta_{12} q^{3} + \beta_{9} q^{7} + (\beta_1 + 1) q^{9} + \beta_{18} q^{11} + \beta_{15} q^{13} + (\beta_{17} - \beta_{12}) q^{17} + (\beta_{19} + \beta_{14} + \beta_{8}) q^{19} - \beta_{19} q^{21}+ \cdots + ( - \beta_{19} + 2 \beta_{18} + \cdots + \beta_{8}) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 20q+16q916q29+24q3924q4960q5132q61+24q6956q79+44q81+4q91+O(q100) 20 q + 16 q^{9} - 16 q^{29} + 24 q^{39} - 24 q^{49} - 60 q^{51} - 32 q^{61} + 24 q^{69} - 56 q^{79} + 44 q^{81} + 4 q^{91}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x20+60x16+1134x12+6924x8+3545x4+64 x^{20} + 60x^{16} + 1134x^{12} + 6924x^{8} + 3545x^{4} + 64 : Copy content Toggle raw display

β1\beta_{1}== (411ν16+25181ν12+501937ν8+3176491ν41179284)/810196 ( 411\nu^{16} + 25181\nu^{12} + 501937\nu^{8} + 3176491\nu^{4} - 1179284 ) / 810196 Copy content Toggle raw display
β2\beta_{2}== (1102ν1859139ν14881097ν101813185ν6+22790499ν2)/1620392 ( -1102\nu^{18} - 59139\nu^{14} - 881097\nu^{10} - 1813185\nu^{6} + 22790499\nu^{2} ) / 1620392 Copy content Toggle raw display
β3\beta_{3}== (1233ν16+75543ν12+1505811ν8+10339669ν4+6994696)/810196 ( 1233\nu^{16} + 75543\nu^{12} + 1505811\nu^{8} + 10339669\nu^{4} + 6994696 ) / 810196 Copy content Toggle raw display
β4\beta_{4}== (4055ν16+246469ν12+4699877ν8+28189727ν4+5860080)/1620392 ( 4055\nu^{16} + 246469\nu^{12} + 4699877\nu^{8} + 28189727\nu^{4} + 5860080 ) / 1620392 Copy content Toggle raw display
β5\beta_{5}== (5971ν16+344145ν12+6136961ν8+34182331ν4+8413200)/1620392 ( 5971\nu^{16} + 344145\nu^{12} + 6136961\nu^{8} + 34182331\nu^{4} + 8413200 ) / 1620392 Copy content Toggle raw display
β6\beta_{6}== (788ν19+2369ν17+50743ν15+134301ν13+1075207ν11+1721336ν)/3240784 ( 788 \nu^{19} + 2369 \nu^{17} + 50743 \nu^{15} + 134301 \nu^{13} + 1075207 \nu^{11} + \cdots - 1721336 \nu ) / 3240784 Copy content Toggle raw display
β7\beta_{7}== (5767ν18+346431ν14+6564959ν10+40432645ν6+24430702ν2)/1620392 ( 5767\nu^{18} + 346431\nu^{14} + 6564959\nu^{10} + 40432645\nu^{6} + 24430702\nu^{2} ) / 1620392 Copy content Toggle raw display
β8\beta_{8}== (5521ν196013ν17+337273ν15355589ν13+6616403ν11++6834912ν)/3240784 ( 5521 \nu^{19} - 6013 \nu^{17} + 337273 \nu^{15} - 355589 \nu^{13} + 6616403 \nu^{11} + \cdots + 6834912 \nu ) / 3240784 Copy content Toggle raw display
β9\beta_{9}== (14212ν18853487ν1416161429ν1099088269ν651538947ν2)/1620392 ( -14212\nu^{18} - 853487\nu^{14} - 16161429\nu^{10} - 99088269\nu^{6} - 51538947\nu^{2} ) / 1620392 Copy content Toggle raw display
β10\beta_{10}== (18335ν18+1099194ν14+20718640ν10+125194558ν6+53140121ν2)/1620392 ( 18335\nu^{18} + 1099194\nu^{14} + 20718640\nu^{10} + 125194558\nu^{6} + 53140121\nu^{2} ) / 1620392 Copy content Toggle raw display
β11\beta_{11}== (16267ν19+3644ν17+979392ν15+221288ν13+18671114ν11+11595144ν)/3240784 ( 16267 \nu^{19} + 3644 \nu^{17} + 979392 \nu^{15} + 221288 \nu^{13} + 18671114 \nu^{11} + \cdots - 11595144 \nu ) / 3240784 Copy content Toggle raw display
β12\beta_{12}== (41403ν194466ν17+2484918ν15271650ν13+46978476ν11+20074520ν)/6481568 ( 41403 \nu^{19} - 4466 \nu^{17} + 2484918 \nu^{15} - 271650 \nu^{13} + 46978476 \nu^{11} + \cdots - 20074520 \nu ) / 6481568 Copy content Toggle raw display
β13\beta_{13}== (42979ν19272ν17+2586404ν15+3048ν13+49128890ν11++23517192ν)/6481568 ( 42979 \nu^{19} - 272 \nu^{17} + 2586404 \nu^{15} + 3048 \nu^{13} + 49128890 \nu^{11} + \cdots + 23517192 \nu ) / 6481568 Copy content Toggle raw display
β14\beta_{14}== (39827ν19+9204ν17+2383432ν15+540252ν13+44828062ν11++16631848ν)/6481568 ( 39827 \nu^{19} + 9204 \nu^{17} + 2383432 \nu^{15} + 540252 \nu^{13} + 44828062 \nu^{11} + \cdots + 16631848 \nu ) / 6481568 Copy content Toggle raw display
β15\beta_{15}== (37526ν19+21492ν18+7657ν172248369ν15+1284238ν14++15994616ν)/3240784 ( - 37526 \nu^{19} + 21492 \nu^{18} + 7657 \nu^{17} - 2248369 \nu^{15} + 1284238 \nu^{14} + \cdots + 15994616 \nu ) / 3240784 Copy content Toggle raw display
β16\beta_{16}== (37526ν19+21492ν187657ν17+2248369ν15+1284238ν14+15994616ν)/3240784 ( 37526 \nu^{19} + 21492 \nu^{18} - 7657 \nu^{17} + 2248369 \nu^{15} + 1284238 \nu^{14} + \cdots - 15994616 \nu ) / 3240784 Copy content Toggle raw display
β17\beta_{17}== (69039ν19+9301ν174141149ν15+557037ν1378226127ν11++32342576ν)/3240784 ( - 69039 \nu^{19} + 9301 \nu^{17} - 4141149 \nu^{15} + 557037 \nu^{13} - 78226127 \nu^{11} + \cdots + 32342576 \nu ) / 3240784 Copy content Toggle raw display
β18\beta_{18}== (80573ν199301ν174834011ν15557037ν1391356045ν11+38824144ν)/3240784 ( - 80573 \nu^{19} - 9301 \nu^{17} - 4834011 \nu^{15} - 557037 \nu^{13} - 91356045 \nu^{11} + \cdots - 38824144 \nu ) / 3240784 Copy content Toggle raw display
β19\beta_{19}== (179481ν1923068ν1710767216ν151385724ν13203430730ν11+84759672ν)/6481568 ( - 179481 \nu^{19} - 23068 \nu^{17} - 10767216 \nu^{15} - 1385724 \nu^{13} - 203430730 \nu^{11} + \cdots - 84759672 \nu ) / 6481568 Copy content Toggle raw display
ν\nu== (2β192β18β17β16+β15+β14+β13β11β6)/8 ( 2\beta_{19} - 2\beta_{18} - \beta_{17} - \beta_{16} + \beta_{15} + \beta_{14} + \beta_{13} - \beta_{11} - \beta_{6} ) / 8 Copy content Toggle raw display
ν2\nu^{2}== (β16β15+β9+6β7β2)/4 ( -\beta_{16} - \beta_{15} + \beta_{9} + 6\beta_{7} - \beta_{2} ) / 4 Copy content Toggle raw display
ν3\nu^{3}== (8β198β18+5β17+5β165β15+β14++5β6)/8 ( 8 \beta_{19} - 8 \beta_{18} + 5 \beta_{17} + 5 \beta_{16} - 5 \beta_{15} + \beta_{14} + \cdots + 5 \beta_{6} ) / 8 Copy content Toggle raw display
ν4\nu^{4}== β33β113 \beta_{3} - 3\beta _1 - 13 Copy content Toggle raw display
ν5\nu^{5}== (34β19+38β18+21β17+25β1625β15+7β14++29β6)/8 ( - 34 \beta_{19} + 38 \beta_{18} + 21 \beta_{17} + 25 \beta_{16} - 25 \beta_{15} + 7 \beta_{14} + \cdots + 29 \beta_{6} ) / 8 Copy content Toggle raw display
ν6\nu^{6}== (33β16+33β15+4β10+3β9122β7+33β2)/4 ( 33\beta_{16} + 33\beta_{15} + 4\beta_{10} + 3\beta_{9} - 122\beta_{7} + 33\beta_{2} ) / 4 Copy content Toggle raw display
ν7\nu^{7}== (152β19+188β1889β17125β16+125β15+161β6)/8 ( - 152 \beta_{19} + 188 \beta_{18} - 89 \beta_{17} - 125 \beta_{16} + 125 \beta_{15} + \cdots - 161 \beta_{6} ) / 8 Copy content Toggle raw display
ν8\nu^{8}== β511β414β3+89β1+285 \beta_{5} - 11\beta_{4} - 14\beta_{3} + 89\beta _1 + 285 Copy content Toggle raw display
ν9\nu^{9}== (706β19954β18385β17633β16+633β15+865β6)/8 ( 706 \beta_{19} - 954 \beta_{18} - 385 \beta_{17} - 633 \beta_{16} + 633 \beta_{15} + \cdots - 865 \beta_{6} ) / 8 Copy content Toggle raw display
ν10\nu^{10}== (925β16925β15344β10563β9+2966β7981β2)/4 ( -925\beta_{16} - 925\beta_{15} - 344\beta_{10} - 563\beta_{9} + 2966\beta_{7} - 981\beta_{2} ) / 4 Copy content Toggle raw display
ν11\nu^{11}== (3384β194928β18+1701β17+3245β163245β15++4565β6)/8 ( 3384 \beta_{19} - 4928 \beta_{18} + 1701 \beta_{17} + 3245 \beta_{16} - 3245 \beta_{15} + \cdots + 4565 \beta_{6} ) / 8 Copy content Toggle raw display
ν12\nu^{12}== 128β5+586β4+194β32543β16831 -128\beta_{5} + 586\beta_{4} + 194\beta_{3} - 2543\beta _1 - 6831 Copy content Toggle raw display
ν13\nu^{13}== (16642β19+25774β18+7669β17+16801β1616801β15++23885β6)/8 ( - 16642 \beta_{19} + 25774 \beta_{18} + 7669 \beta_{17} + 16801 \beta_{16} - 16801 \beta_{15} + \cdots + 23885 \beta_{6} ) / 8 Copy content Toggle raw display
ν14\nu^{14}== (25173β16+25173β15+14844β10+23375β977850β7+29053β2)/4 ( 25173\beta_{16} + 25173\beta_{15} + 14844\beta_{10} + 23375\beta_{9} - 77850\beta_{7} + 29053\beta_{2} ) / 4 Copy content Toggle raw display
ν15\nu^{15}== (83528β19+135956β1835241β1787669β16+87669β15+124577β6)/8 ( - 83528 \beta_{19} + 135956 \beta_{18} - 35241 \beta_{17} - 87669 \beta_{16} + 87669 \beta_{15} + \cdots - 124577 \beta_{6} ) / 8 Copy content Toggle raw display
ν16\nu^{16}== 6621β522469β42517β3+72269β1+173803 6621\beta_{5} - 22469\beta_{4} - 2517\beta_{3} + 72269\beta _1 + 173803 Copy content Toggle raw display
ν17\nu^{17}== (425922β19721346β18164849β17460273β16+460273β15+649761β6)/8 ( 425922 \beta_{19} - 721346 \beta_{18} - 164849 \beta_{17} - 460273 \beta_{16} + 460273 \beta_{15} + \cdots - 649761 \beta_{6} ) / 8 Copy content Toggle raw display
ν18\nu^{18}== (686313β16686313β15528144β10788535β9+855641β2)/4 ( - 686313 \beta_{16} - 686313 \beta_{15} - 528144 \beta_{10} - 788535 \beta_{9} + \cdots - 855641 \beta_{2} ) / 4 Copy content Toggle raw display
ν19\nu^{19}== (2198312β193842488β18+783973β17+2428149β16++3395013β6)/8 ( 2198312 \beta_{19} - 3842488 \beta_{18} + 783973 \beta_{17} + 2428149 \beta_{16} + \cdots + 3395013 \beta_{6} ) / 8 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2600Z)×\left(\mathbb{Z}/2600\mathbb{Z}\right)^\times.

nn 13011301 16011601 19511951 19771977
χ(n)\chi(n) 11 1-1 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
2001.1
−1.63982 1.63982i
−1.63982 + 1.63982i
1.47826 1.47826i
1.47826 + 1.47826i
0.261614 + 0.261614i
0.261614 0.261614i
1.29975 1.29975i
1.29975 + 1.29975i
0.606602 + 0.606602i
0.606602 0.606602i
−0.606602 0.606602i
−0.606602 + 0.606602i
−1.29975 + 1.29975i
−1.29975 1.29975i
−0.261614 0.261614i
−0.261614 + 0.261614i
−1.47826 + 1.47826i
−1.47826 1.47826i
1.63982 + 1.63982i
1.63982 1.63982i
0 −3.22659 0 0 0 1.65488i 0 7.41088 0
2001.2 0 −3.22659 0 0 0 1.65488i 0 7.41088 0
2001.3 0 −2.14926 0 0 0 2.12171i 0 1.61930 0
2001.4 0 −2.14926 0 0 0 2.12171i 0 1.61930 0
2001.5 0 −1.57201 0 0 0 4.19743i 0 −0.528799 0
2001.6 0 −1.57201 0 0 0 4.19743i 0 −0.528799 0
2001.7 0 −0.949078 0 0 0 3.85660i 0 −2.09925 0
2001.8 0 −0.949078 0 0 0 3.85660i 0 −2.09925 0
2001.9 0 −0.773218 0 0 0 1.12600i 0 −2.40213 0
2001.10 0 −0.773218 0 0 0 1.12600i 0 −2.40213 0
2001.11 0 0.773218 0 0 0 1.12600i 0 −2.40213 0
2001.12 0 0.773218 0 0 0 1.12600i 0 −2.40213 0
2001.13 0 0.949078 0 0 0 3.85660i 0 −2.09925 0
2001.14 0 0.949078 0 0 0 3.85660i 0 −2.09925 0
2001.15 0 1.57201 0 0 0 4.19743i 0 −0.528799 0
2001.16 0 1.57201 0 0 0 4.19743i 0 −0.528799 0
2001.17 0 2.14926 0 0 0 2.12171i 0 1.61930 0
2001.18 0 2.14926 0 0 0 2.12171i 0 1.61930 0
2001.19 0 3.22659 0 0 0 1.65488i 0 7.41088 0
2001.20 0 3.22659 0 0 0 1.65488i 0 7.41088 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 2001.20
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
13.b even 2 1 inner
65.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2600.2.k.f 20
5.b even 2 1 inner 2600.2.k.f 20
5.c odd 4 1 520.2.f.a 10
5.c odd 4 1 520.2.f.b yes 10
13.b even 2 1 inner 2600.2.k.f 20
20.e even 4 1 1040.2.f.f 10
20.e even 4 1 1040.2.f.g 10
65.d even 2 1 inner 2600.2.k.f 20
65.h odd 4 1 520.2.f.a 10
65.h odd 4 1 520.2.f.b yes 10
260.p even 4 1 1040.2.f.f 10
260.p even 4 1 1040.2.f.g 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
520.2.f.a 10 5.c odd 4 1
520.2.f.a 10 65.h odd 4 1
520.2.f.b yes 10 5.c odd 4 1
520.2.f.b yes 10 65.h odd 4 1
1040.2.f.f 10 20.e even 4 1
1040.2.f.f 10 260.p even 4 1
1040.2.f.g 10 20.e even 4 1
1040.2.f.g 10 260.p even 4 1
2600.2.k.f 20 1.a even 1 1 trivial
2600.2.k.f 20 5.b even 2 1 inner
2600.2.k.f 20 13.b even 2 1 inner
2600.2.k.f 20 65.d even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T31019T38+112T36256T34+224T3264 T_{3}^{10} - 19T_{3}^{8} + 112T_{3}^{6} - 256T_{3}^{4} + 224T_{3}^{2} - 64 acting on S2new(2600,[χ])S_{2}^{\mathrm{new}}(2600, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T20 T^{20} Copy content Toggle raw display
33 (T1019T8+64)2 (T^{10} - 19 T^{8} + \cdots - 64)^{2} Copy content Toggle raw display
55 T20 T^{20} Copy content Toggle raw display
77 (T10+41T8++4096)2 (T^{10} + 41 T^{8} + \cdots + 4096)^{2} Copy content Toggle raw display
1111 (T10+64T8++1024)2 (T^{10} + 64 T^{8} + \cdots + 1024)^{2} Copy content Toggle raw display
1313 T20++137858491849 T^{20} + \cdots + 137858491849 Copy content Toggle raw display
1717 (T10107T8+262144)2 (T^{10} - 107 T^{8} + \cdots - 262144)^{2} Copy content Toggle raw display
1919 (T10+92T8++256)2 (T^{10} + 92 T^{8} + \cdots + 256)^{2} Copy content Toggle raw display
2323 (T1044T8+256)2 (T^{10} - 44 T^{8} + \cdots - 256)^{2} Copy content Toggle raw display
2929 (T5+4T456T3++64)4 (T^{5} + 4 T^{4} - 56 T^{3} + \cdots + 64)^{4} Copy content Toggle raw display
3131 (T10+108T8++256)2 (T^{10} + 108 T^{8} + \cdots + 256)^{2} Copy content Toggle raw display
3737 (T10+65T8++256)2 (T^{10} + 65 T^{8} + \cdots + 256)^{2} Copy content Toggle raw display
4141 (T10+208T8++4194304)2 (T^{10} + 208 T^{8} + \cdots + 4194304)^{2} Copy content Toggle raw display
4343 (T10211T8+40246336)2 (T^{10} - 211 T^{8} + \cdots - 40246336)^{2} Copy content Toggle raw display
4747 (T10+41T8++4096)2 (T^{10} + 41 T^{8} + \cdots + 4096)^{2} Copy content Toggle raw display
5353 (T10364T8+294191104)2 (T^{10} - 364 T^{8} + \cdots - 294191104)^{2} Copy content Toggle raw display
5959 (T10+316T8++59228416)2 (T^{10} + 316 T^{8} + \cdots + 59228416)^{2} Copy content Toggle raw display
6161 (T5+8T4++128)4 (T^{5} + 8 T^{4} + \cdots + 128)^{4} Copy content Toggle raw display
6767 (T10+224T8++110166016)2 (T^{10} + 224 T^{8} + \cdots + 110166016)^{2} Copy content Toggle raw display
7171 (T10+475T8++583319104)2 (T^{10} + 475 T^{8} + \cdots + 583319104)^{2} Copy content Toggle raw display
7373 (T10+212T8++45589504)2 (T^{10} + 212 T^{8} + \cdots + 45589504)^{2} Copy content Toggle raw display
7979 (T5+14T4++83968)4 (T^{5} + 14 T^{4} + \cdots + 83968)^{4} Copy content Toggle raw display
8383 (T10+628T8++17618845696)2 (T^{10} + 628 T^{8} + \cdots + 17618845696)^{2} Copy content Toggle raw display
8989 (T10+524T8++16777216)2 (T^{10} + 524 T^{8} + \cdots + 16777216)^{2} Copy content Toggle raw display
9797 (T10+464T8++22429696)2 (T^{10} + 464 T^{8} + \cdots + 22429696)^{2} Copy content Toggle raw display
show more
show less