L(s) = 1 | + 3.22·3-s + 1.65i·7-s + 7.41·9-s + 4.44i·11-s + (2.97 + 2.04i)13-s − 5.33·17-s + 0.472i·19-s + 5.33i·21-s − 1.08·23-s + 14.2·27-s − 5.50·29-s + 5.47i·31-s + 14.3i·33-s + 3.65i·37-s + (9.59 + 6.58i)39-s + ⋯ |
L(s) = 1 | + 1.86·3-s + 0.625i·7-s + 2.47·9-s + 1.34i·11-s + (0.824 + 0.566i)13-s − 1.29·17-s + 0.108i·19-s + 1.16i·21-s − 0.226·23-s + 2.73·27-s − 1.02·29-s + 0.982i·31-s + 2.49i·33-s + 0.600i·37-s + (1.53 + 1.05i)39-s + ⋯ |
Λ(s)=(=(2600s/2ΓC(s)L(s)(0.566−0.824i)Λ(2−s)
Λ(s)=(=(2600s/2ΓC(s+1/2)L(s)(0.566−0.824i)Λ(1−s)
Degree: |
2 |
Conductor: |
2600
= 23⋅52⋅13
|
Sign: |
0.566−0.824i
|
Analytic conductor: |
20.7611 |
Root analytic conductor: |
4.55643 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2600(2001,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2600, ( :1/2), 0.566−0.824i)
|
Particular Values
L(1) |
≈ |
3.647943149 |
L(21) |
≈ |
3.647943149 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 13 | 1+(−2.97−2.04i)T |
good | 3 | 1−3.22T+3T2 |
| 7 | 1−1.65iT−7T2 |
| 11 | 1−4.44iT−11T2 |
| 17 | 1+5.33T+17T2 |
| 19 | 1−0.472iT−19T2 |
| 23 | 1+1.08T+23T2 |
| 29 | 1+5.50T+29T2 |
| 31 | 1−5.47iT−31T2 |
| 37 | 1−3.65iT−37T2 |
| 41 | 1+10.4iT−41T2 |
| 43 | 1−8.14T+43T2 |
| 47 | 1+1.65iT−47T2 |
| 53 | 1+4.14T+53T2 |
| 59 | 1−2.52iT−59T2 |
| 61 | 1−0.160T+61T2 |
| 67 | 1−8.26iT−67T2 |
| 71 | 1+12.9iT−71T2 |
| 73 | 1+10.2iT−73T2 |
| 79 | 1+8.65T+79T2 |
| 83 | 1+14.0iT−83T2 |
| 89 | 1−7.61iT−89T2 |
| 97 | 1+16.7iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.864630578476247571617954419195, −8.559050184675564210882326583730, −7.43022528014981289012115920204, −7.10168267019448967942293587728, −6.05334748711448665383507324276, −4.69919460389394493222247074389, −4.10597305803721693061867303141, −3.23004595915350682747225259684, −2.16109106444297900421409103862, −1.78893856720956338228675344294,
0.950782544221473328299216402275, 2.18974928210408963695823158547, 3.04671880008335309359555932698, 3.80431669689268855038315682810, 4.34970052427376633364869511863, 5.76504436768863972554372230652, 6.63926801697882489102602788264, 7.56139239434245827346451824401, 8.084219147984023337793633535352, 8.730062003508166046962727617055