Properties

Label 2-2600-13.12-c1-0-39
Degree $2$
Conductor $2600$
Sign $0.566 - 0.824i$
Analytic cond. $20.7611$
Root an. cond. $4.55643$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.22·3-s + 1.65i·7-s + 7.41·9-s + 4.44i·11-s + (2.97 + 2.04i)13-s − 5.33·17-s + 0.472i·19-s + 5.33i·21-s − 1.08·23-s + 14.2·27-s − 5.50·29-s + 5.47i·31-s + 14.3i·33-s + 3.65i·37-s + (9.59 + 6.58i)39-s + ⋯
L(s)  = 1  + 1.86·3-s + 0.625i·7-s + 2.47·9-s + 1.34i·11-s + (0.824 + 0.566i)13-s − 1.29·17-s + 0.108i·19-s + 1.16i·21-s − 0.226·23-s + 2.73·27-s − 1.02·29-s + 0.982i·31-s + 2.49i·33-s + 0.600i·37-s + (1.53 + 1.05i)39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.566 - 0.824i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.566 - 0.824i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2600\)    =    \(2^{3} \cdot 5^{2} \cdot 13\)
Sign: $0.566 - 0.824i$
Analytic conductor: \(20.7611\)
Root analytic conductor: \(4.55643\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2600} (2001, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2600,\ (\ :1/2),\ 0.566 - 0.824i)\)

Particular Values

\(L(1)\) \(\approx\) \(3.647943149\)
\(L(\frac12)\) \(\approx\) \(3.647943149\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
13 \( 1 + (-2.97 - 2.04i)T \)
good3 \( 1 - 3.22T + 3T^{2} \)
7 \( 1 - 1.65iT - 7T^{2} \)
11 \( 1 - 4.44iT - 11T^{2} \)
17 \( 1 + 5.33T + 17T^{2} \)
19 \( 1 - 0.472iT - 19T^{2} \)
23 \( 1 + 1.08T + 23T^{2} \)
29 \( 1 + 5.50T + 29T^{2} \)
31 \( 1 - 5.47iT - 31T^{2} \)
37 \( 1 - 3.65iT - 37T^{2} \)
41 \( 1 + 10.4iT - 41T^{2} \)
43 \( 1 - 8.14T + 43T^{2} \)
47 \( 1 + 1.65iT - 47T^{2} \)
53 \( 1 + 4.14T + 53T^{2} \)
59 \( 1 - 2.52iT - 59T^{2} \)
61 \( 1 - 0.160T + 61T^{2} \)
67 \( 1 - 8.26iT - 67T^{2} \)
71 \( 1 + 12.9iT - 71T^{2} \)
73 \( 1 + 10.2iT - 73T^{2} \)
79 \( 1 + 8.65T + 79T^{2} \)
83 \( 1 + 14.0iT - 83T^{2} \)
89 \( 1 - 7.61iT - 89T^{2} \)
97 \( 1 + 16.7iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.864630578476247571617954419195, −8.559050184675564210882326583730, −7.43022528014981289012115920204, −7.10168267019448967942293587728, −6.05334748711448665383507324276, −4.69919460389394493222247074389, −4.10597305803721693061867303141, −3.23004595915350682747225259684, −2.16109106444297900421409103862, −1.78893856720956338228675344294, 0.950782544221473328299216402275, 2.18974928210408963695823158547, 3.04671880008335309359555932698, 3.80431669689268855038315682810, 4.34970052427376633364869511863, 5.76504436768863972554372230652, 6.63926801697882489102602788264, 7.56139239434245827346451824401, 8.084219147984023337793633535352, 8.730062003508166046962727617055

Graph of the $Z$-function along the critical line