L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.499 − 0.866i)4-s + (0.517 + 0.896i)5-s − 0.999·8-s + 1.03·10-s + (−0.133 + 0.232i)11-s + (0.896 + 1.55i)13-s + (−0.5 + 0.866i)16-s − 6.83·17-s − 4.38·19-s + (0.517 − 0.896i)20-s + (0.133 + 0.232i)22-s + (2.73 + 4.73i)23-s + (1.96 − 3.40i)25-s + 1.79·26-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (−0.249 − 0.433i)4-s + (0.231 + 0.400i)5-s − 0.353·8-s + 0.327·10-s + (−0.0403 + 0.0699i)11-s + (0.248 + 0.430i)13-s + (−0.125 + 0.216i)16-s − 1.65·17-s − 1.00·19-s + (0.115 − 0.200i)20-s + (0.0285 + 0.0494i)22-s + (0.569 + 0.986i)23-s + (0.392 − 0.680i)25-s + 0.351·26-s + ⋯ |
Λ(s)=(=(2646s/2ΓC(s)L(s)(0.422−0.906i)Λ(2−s)
Λ(s)=(=(2646s/2ΓC(s+1/2)L(s)(0.422−0.906i)Λ(1−s)
Degree: |
2 |
Conductor: |
2646
= 2⋅33⋅72
|
Sign: |
0.422−0.906i
|
Analytic conductor: |
21.1284 |
Root analytic conductor: |
4.59656 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2646(883,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2646, ( :1/2), 0.422−0.906i)
|
Particular Values
L(1) |
≈ |
1.333433615 |
L(21) |
≈ |
1.333433615 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.5+0.866i)T |
| 3 | 1 |
| 7 | 1 |
good | 5 | 1+(−0.517−0.896i)T+(−2.5+4.33i)T2 |
| 11 | 1+(0.133−0.232i)T+(−5.5−9.52i)T2 |
| 13 | 1+(−0.896−1.55i)T+(−6.5+11.2i)T2 |
| 17 | 1+6.83T+17T2 |
| 19 | 1+4.38T+19T2 |
| 23 | 1+(−2.73−4.73i)T+(−11.5+19.9i)T2 |
| 29 | 1+(2−3.46i)T+(−14.5−25.1i)T2 |
| 31 | 1+(−3.34−5.79i)T+(−15.5+26.8i)T2 |
| 37 | 1−7.46T+37T2 |
| 41 | 1+(−4.31−7.46i)T+(−20.5+35.5i)T2 |
| 43 | 1+(0.133−0.232i)T+(−21.5−37.2i)T2 |
| 47 | 1+(0.378−0.656i)T+(−23.5−40.7i)T2 |
| 53 | 1+10.9T+53T2 |
| 59 | 1+(−0.637−1.10i)T+(−29.5+51.0i)T2 |
| 61 | 1+(6.31−10.9i)T+(−30.5−52.8i)T2 |
| 67 | 1+(6.23+10.7i)T+(−33.5+58.0i)T2 |
| 71 | 1+9.46T+71T2 |
| 73 | 1+5.41T+73T2 |
| 79 | 1+(4.46−7.73i)T+(−39.5−68.4i)T2 |
| 83 | 1+(3.29−5.70i)T+(−41.5−71.8i)T2 |
| 89 | 1−7.07T+89T2 |
| 97 | 1+(9.07−15.7i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.069430898785647362337613279030, −8.474695590631897327891703967657, −7.35836014521929690482811297822, −6.49801076311127886739193809480, −6.05063969197329179570555368951, −4.75883382212447270263802171926, −4.35275762374032254639276554214, −3.17621336617359618351002460851, −2.40628988757595518830022885550, −1.38777777582587973401121325985,
0.37608286951440586019149715419, 2.03859035898900920146664470968, 3.01828328418148232123461006968, 4.35685619960537945574319479058, 4.58811372933363090468088979615, 5.82304341513114286414476789448, 6.26752903400932846684288603062, 7.12927353924239498033796085633, 7.950120646666905359748944394193, 8.760611698349618937367105282170