L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.499 − 0.866i)4-s + (0.517 + 0.896i)5-s − 0.999·8-s + 1.03·10-s + (−0.133 + 0.232i)11-s + (0.896 + 1.55i)13-s + (−0.5 + 0.866i)16-s − 6.83·17-s − 4.38·19-s + (0.517 − 0.896i)20-s + (0.133 + 0.232i)22-s + (2.73 + 4.73i)23-s + (1.96 − 3.40i)25-s + 1.79·26-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (−0.249 − 0.433i)4-s + (0.231 + 0.400i)5-s − 0.353·8-s + 0.327·10-s + (−0.0403 + 0.0699i)11-s + (0.248 + 0.430i)13-s + (−0.125 + 0.216i)16-s − 1.65·17-s − 1.00·19-s + (0.115 − 0.200i)20-s + (0.0285 + 0.0494i)22-s + (0.569 + 0.986i)23-s + (0.392 − 0.680i)25-s + 0.351·26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2646 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.422 - 0.906i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2646 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.422 - 0.906i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.333433615\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.333433615\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (-0.517 - 0.896i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (0.133 - 0.232i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-0.896 - 1.55i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + 6.83T + 17T^{2} \) |
| 19 | \( 1 + 4.38T + 19T^{2} \) |
| 23 | \( 1 + (-2.73 - 4.73i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (2 - 3.46i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-3.34 - 5.79i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 7.46T + 37T^{2} \) |
| 41 | \( 1 + (-4.31 - 7.46i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (0.133 - 0.232i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (0.378 - 0.656i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 10.9T + 53T^{2} \) |
| 59 | \( 1 + (-0.637 - 1.10i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (6.31 - 10.9i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (6.23 + 10.7i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 9.46T + 71T^{2} \) |
| 73 | \( 1 + 5.41T + 73T^{2} \) |
| 79 | \( 1 + (4.46 - 7.73i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (3.29 - 5.70i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 7.07T + 89T^{2} \) |
| 97 | \( 1 + (9.07 - 15.7i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.069430898785647362337613279030, −8.474695590631897327891703967657, −7.35836014521929690482811297822, −6.49801076311127886739193809480, −6.05063969197329179570555368951, −4.75883382212447270263802171926, −4.35275762374032254639276554214, −3.17621336617359618351002460851, −2.40628988757595518830022885550, −1.38777777582587973401121325985,
0.37608286951440586019149715419, 2.03859035898900920146664470968, 3.01828328418148232123461006968, 4.35685619960537945574319479058, 4.58811372933363090468088979615, 5.82304341513114286414476789448, 6.26752903400932846684288603062, 7.12927353924239498033796085633, 7.950120646666905359748944394193, 8.760611698349618937367105282170