Properties

Label 2646.2.f.r
Level 26462646
Weight 22
Character orbit 2646.f
Analytic conductor 21.12821.128
Analytic rank 00
Dimension 88
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2646,2,Mod(883,2646)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2646, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2646.883");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 2646=23372 2646 = 2 \cdot 3^{3} \cdot 7^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2646.f (of order 33, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 21.128416374821.1284163748
Analytic rank: 00
Dimension: 88
Relative dimension: 44 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q(ζ24)\Q(\zeta_{24})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8x4+1 x^{8} - x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a17]\Z[a_1, \ldots, a_{17}]
Coefficient ring index: 32 3^{2}
Twist minimal: no (minimal twist has level 882)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q2+(β11)q42β7q5q8+(2β62β5)q10+(β22β1)q11+(2β7+2β52β3)q13β1q16++(5β7+5β6+11β3)q97+O(q100) q + \beta_1 q^{2} + (\beta_1 - 1) q^{4} - 2 \beta_{7} q^{5} - q^{8} + ( - 2 \beta_{6} - 2 \beta_{5}) q^{10} + ( - \beta_{2} - 2 \beta_1) q^{11} + (2 \beta_{7} + 2 \beta_{5} - 2 \beta_{3}) q^{13} - \beta_1 q^{16}+ \cdots + ( - 5 \beta_{7} + 5 \beta_{6} + \cdots - 11 \beta_{3}) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+4q24q48q88q114q16+8q22+8q2312q2516q29+4q32+32q378q43+16q44+16q46+12q5032q53+16q58+8q64+32q95+O(q100) 8 q + 4 q^{2} - 4 q^{4} - 8 q^{8} - 8 q^{11} - 4 q^{16} + 8 q^{22} + 8 q^{23} - 12 q^{25} - 16 q^{29} + 4 q^{32} + 32 q^{37} - 8 q^{43} + 16 q^{44} + 16 q^{46} + 12 q^{50} - 32 q^{53} + 16 q^{58} + 8 q^{64}+ \cdots - 32 q^{95}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring

β1\beta_{1}== ζ244 \zeta_{24}^{4} Copy content Toggle raw display
β2\beta_{2}== ζ246+ζ242 \zeta_{24}^{6} + \zeta_{24}^{2} Copy content Toggle raw display
β3\beta_{3}== ζ247+ζ24 \zeta_{24}^{7} + \zeta_{24} Copy content Toggle raw display
β4\beta_{4}== ζ246+2ζ242 -\zeta_{24}^{6} + 2\zeta_{24}^{2} Copy content Toggle raw display
β5\beta_{5}== ζ245+ζ243+ζ24 -\zeta_{24}^{5} + \zeta_{24}^{3} + \zeta_{24} Copy content Toggle raw display
β6\beta_{6}== ζ247+ζ245 -\zeta_{24}^{7} + \zeta_{24}^{5} Copy content Toggle raw display
β7\beta_{7}== ζ247ζ245+ζ24 -\zeta_{24}^{7} - \zeta_{24}^{5} + \zeta_{24} Copy content Toggle raw display
ζ24\zeta_{24}== (β7+β6+2β3)/3 ( \beta_{7} + \beta_{6} + 2\beta_{3} ) / 3 Copy content Toggle raw display
ζ242\zeta_{24}^{2}== (β4+β2)/3 ( \beta_{4} + \beta_{2} ) / 3 Copy content Toggle raw display
ζ243\zeta_{24}^{3}== (2β7+β6+3β5β3)/3 ( -2\beta_{7} + \beta_{6} + 3\beta_{5} - \beta_{3} ) / 3 Copy content Toggle raw display
ζ244\zeta_{24}^{4}== β1 \beta_1 Copy content Toggle raw display
ζ245\zeta_{24}^{5}== (β7+2β6+β3)/3 ( -\beta_{7} + 2\beta_{6} + \beta_{3} ) / 3 Copy content Toggle raw display
ζ246\zeta_{24}^{6}== (β4+2β2)/3 ( -\beta_{4} + 2\beta_{2} ) / 3 Copy content Toggle raw display
ζ247\zeta_{24}^{7}== (β7β6+β3)/3 ( -\beta_{7} - \beta_{6} + \beta_{3} ) / 3 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2646Z)×\left(\mathbb{Z}/2646\mathbb{Z}\right)^\times.

nn 785785 10811081
χ(n)\chi(n) 1+β1-1 + \beta_{1} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
883.1
0.965926 0.258819i
0.258819 + 0.965926i
−0.258819 0.965926i
−0.965926 + 0.258819i
0.965926 + 0.258819i
0.258819 0.965926i
−0.258819 + 0.965926i
−0.965926 0.258819i
0.500000 0.866025i 0 −0.500000 0.866025i −1.93185 3.34607i 0 0 −1.00000 0 −3.86370
883.2 0.500000 0.866025i 0 −0.500000 0.866025i −0.517638 0.896575i 0 0 −1.00000 0 −1.03528
883.3 0.500000 0.866025i 0 −0.500000 0.866025i 0.517638 + 0.896575i 0 0 −1.00000 0 1.03528
883.4 0.500000 0.866025i 0 −0.500000 0.866025i 1.93185 + 3.34607i 0 0 −1.00000 0 3.86370
1765.1 0.500000 + 0.866025i 0 −0.500000 + 0.866025i −1.93185 + 3.34607i 0 0 −1.00000 0 −3.86370
1765.2 0.500000 + 0.866025i 0 −0.500000 + 0.866025i −0.517638 + 0.896575i 0 0 −1.00000 0 −1.03528
1765.3 0.500000 + 0.866025i 0 −0.500000 + 0.866025i 0.517638 0.896575i 0 0 −1.00000 0 1.03528
1765.4 0.500000 + 0.866025i 0 −0.500000 + 0.866025i 1.93185 3.34607i 0 0 −1.00000 0 3.86370
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 883.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner
9.c even 3 1 inner
63.l odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2646.2.f.r 8
3.b odd 2 1 882.2.f.q 8
7.b odd 2 1 inner 2646.2.f.r 8
7.c even 3 1 2646.2.e.q 8
7.c even 3 1 2646.2.h.t 8
7.d odd 6 1 2646.2.e.q 8
7.d odd 6 1 2646.2.h.t 8
9.c even 3 1 inner 2646.2.f.r 8
9.c even 3 1 7938.2.a.ci 4
9.d odd 6 1 882.2.f.q 8
9.d odd 6 1 7938.2.a.cp 4
21.c even 2 1 882.2.f.q 8
21.g even 6 1 882.2.e.s 8
21.g even 6 1 882.2.h.q 8
21.h odd 6 1 882.2.e.s 8
21.h odd 6 1 882.2.h.q 8
63.g even 3 1 2646.2.e.q 8
63.h even 3 1 2646.2.h.t 8
63.i even 6 1 882.2.h.q 8
63.j odd 6 1 882.2.h.q 8
63.k odd 6 1 2646.2.e.q 8
63.l odd 6 1 inner 2646.2.f.r 8
63.l odd 6 1 7938.2.a.ci 4
63.n odd 6 1 882.2.e.s 8
63.o even 6 1 882.2.f.q 8
63.o even 6 1 7938.2.a.cp 4
63.s even 6 1 882.2.e.s 8
63.t odd 6 1 2646.2.h.t 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
882.2.e.s 8 21.g even 6 1
882.2.e.s 8 21.h odd 6 1
882.2.e.s 8 63.n odd 6 1
882.2.e.s 8 63.s even 6 1
882.2.f.q 8 3.b odd 2 1
882.2.f.q 8 9.d odd 6 1
882.2.f.q 8 21.c even 2 1
882.2.f.q 8 63.o even 6 1
882.2.h.q 8 21.g even 6 1
882.2.h.q 8 21.h odd 6 1
882.2.h.q 8 63.i even 6 1
882.2.h.q 8 63.j odd 6 1
2646.2.e.q 8 7.c even 3 1
2646.2.e.q 8 7.d odd 6 1
2646.2.e.q 8 63.g even 3 1
2646.2.e.q 8 63.k odd 6 1
2646.2.f.r 8 1.a even 1 1 trivial
2646.2.f.r 8 7.b odd 2 1 inner
2646.2.f.r 8 9.c even 3 1 inner
2646.2.f.r 8 63.l odd 6 1 inner
2646.2.h.t 8 7.c even 3 1
2646.2.h.t 8 7.d odd 6 1
2646.2.h.t 8 63.h even 3 1
2646.2.h.t 8 63.t odd 6 1
7938.2.a.ci 4 9.c even 3 1
7938.2.a.ci 4 63.l odd 6 1
7938.2.a.cp 4 9.d odd 6 1
7938.2.a.cp 4 63.o even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(2646,[χ])S_{2}^{\mathrm{new}}(2646, [\chi]):

T58+16T56+240T54+256T52+256 T_{5}^{8} + 16T_{5}^{6} + 240T_{5}^{4} + 256T_{5}^{2} + 256 Copy content Toggle raw display
T114+4T113+15T112+4T11+1 T_{11}^{4} + 4T_{11}^{3} + 15T_{11}^{2} + 4T_{11} + 1 Copy content Toggle raw display
T138+48T136+2160T134+6912T132+20736 T_{13}^{8} + 48T_{13}^{6} + 2160T_{13}^{4} + 6912T_{13}^{2} + 20736 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2T+1)4 (T^{2} - T + 1)^{4} Copy content Toggle raw display
33 T8 T^{8} Copy content Toggle raw display
55 T8+16T6++256 T^{8} + 16 T^{6} + \cdots + 256 Copy content Toggle raw display
77 T8 T^{8} Copy content Toggle raw display
1111 (T4+4T3+15T2++1)2 (T^{4} + 4 T^{3} + 15 T^{2} + \cdots + 1)^{2} Copy content Toggle raw display
1313 T8+48T6++20736 T^{8} + 48 T^{6} + \cdots + 20736 Copy content Toggle raw display
1717 (T476T2+1369)2 (T^{4} - 76 T^{2} + 1369)^{2} Copy content Toggle raw display
1919 (T428T2+169)2 (T^{4} - 28 T^{2} + 169)^{2} Copy content Toggle raw display
2323 (T44T3+24T2++64)2 (T^{4} - 4 T^{3} + 24 T^{2} + \cdots + 64)^{2} Copy content Toggle raw display
2929 (T2+4T+16)4 (T^{2} + 4 T + 16)^{4} Copy content Toggle raw display
3131 T8+48T6++20736 T^{8} + 48 T^{6} + \cdots + 20736 Copy content Toggle raw display
3737 (T28T+4)4 (T^{2} - 8 T + 4)^{4} Copy content Toggle raw display
4141 T8+76T6++14641 T^{8} + 76 T^{6} + \cdots + 14641 Copy content Toggle raw display
4343 (T4+4T3+15T2++1)2 (T^{4} + 4 T^{3} + 15 T^{2} + \cdots + 1)^{2} Copy content Toggle raw display
4747 T8+112T6++4096 T^{8} + 112 T^{6} + \cdots + 4096 Copy content Toggle raw display
5353 (T2+8T32)4 (T^{2} + 8 T - 32)^{4} Copy content Toggle raw display
5959 T8+76T6++14641 T^{8} + 76 T^{6} + \cdots + 14641 Copy content Toggle raw display
6161 T8+208T6++59969536 T^{8} + 208 T^{6} + \cdots + 59969536 Copy content Toggle raw display
6767 (T4+18T3++4761)2 (T^{4} + 18 T^{3} + \cdots + 4761)^{2} Copy content Toggle raw display
7171 (T2+12T+24)4 (T^{2} + 12 T + 24)^{4} Copy content Toggle raw display
7373 (T476T2+1369)2 (T^{4} - 76 T^{2} + 1369)^{2} Copy content Toggle raw display
7979 (T4+4T3++1936)2 (T^{4} + 4 T^{3} + \cdots + 1936)^{2} Copy content Toggle raw display
8383 T8+364T6++193877776 T^{8} + 364 T^{6} + \cdots + 193877776 Copy content Toggle raw display
8989 (T250)4 (T^{2} - 50)^{4} Copy content Toggle raw display
9797 T8+364T6++131079601 T^{8} + 364 T^{6} + \cdots + 131079601 Copy content Toggle raw display
show more
show less