L(s) = 1 | + (−0.5 − 0.866i)2-s + (0.309 − 0.951i)3-s + (−0.499 + 0.866i)4-s + (0.809 − 1.40i)5-s + (−0.978 + 0.207i)6-s + 0.999·8-s + (−0.809 − 0.587i)9-s − 1.61·10-s + (0.104 + 0.181i)11-s + (0.669 + 0.743i)12-s + (0.978 − 1.69i)13-s + (−1.08 − 1.20i)15-s + (−0.5 − 0.866i)16-s + (−0.104 + 0.994i)18-s + (0.809 + 1.40i)20-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.866i)2-s + (0.309 − 0.951i)3-s + (−0.499 + 0.866i)4-s + (0.809 − 1.40i)5-s + (−0.978 + 0.207i)6-s + 0.999·8-s + (−0.809 − 0.587i)9-s − 1.61·10-s + (0.104 + 0.181i)11-s + (0.669 + 0.743i)12-s + (0.978 − 1.69i)13-s + (−1.08 − 1.20i)15-s + (−0.5 − 0.866i)16-s + (−0.104 + 0.994i)18-s + (0.809 + 1.40i)20-s + ⋯ |
Λ(s)=(=(2664s/2ΓC(s)L(s)(−0.997+0.0697i)Λ(1−s)
Λ(s)=(=(2664s/2ΓC(s)L(s)(−0.997+0.0697i)Λ(1−s)
Degree: |
2 |
Conductor: |
2664
= 23⋅32⋅37
|
Sign: |
−0.997+0.0697i
|
Analytic conductor: |
1.32950 |
Root analytic conductor: |
1.15304 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2664(2515,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2664, ( :0), −0.997+0.0697i)
|
Particular Values
L(21) |
≈ |
1.170083327 |
L(21) |
≈ |
1.170083327 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.5+0.866i)T |
| 3 | 1+(−0.309+0.951i)T |
| 37 | 1−T |
good | 5 | 1+(−0.809+1.40i)T+(−0.5−0.866i)T2 |
| 7 | 1+(0.5−0.866i)T2 |
| 11 | 1+(−0.104−0.181i)T+(−0.5+0.866i)T2 |
| 13 | 1+(−0.978+1.69i)T+(−0.5−0.866i)T2 |
| 17 | 1−T2 |
| 19 | 1−T2 |
| 23 | 1+(0.669−1.15i)T+(−0.5−0.866i)T2 |
| 29 | 1+(−0.978−1.69i)T+(−0.5+0.866i)T2 |
| 31 | 1+(−0.809+1.40i)T+(−0.5−0.866i)T2 |
| 41 | 1+(0.309−0.535i)T+(−0.5−0.866i)T2 |
| 43 | 1+(0.5−0.866i)T2 |
| 47 | 1+(0.5−0.866i)T2 |
| 53 | 1−T2 |
| 59 | 1+(0.5+0.866i)T2 |
| 61 | 1+(0.913+1.58i)T+(−0.5+0.866i)T2 |
| 67 | 1+(0.913−1.58i)T+(−0.5−0.866i)T2 |
| 71 | 1−T2 |
| 73 | 1+0.209T+T2 |
| 79 | 1+(0.309+0.535i)T+(−0.5+0.866i)T2 |
| 83 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 89 | 1−T2 |
| 97 | 1+(0.5−0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.627700275435269704440780518661, −8.136471636763280044351723078232, −7.59245195072904525938047859753, −6.26780936476822113280540416313, −5.59775929368079165496528381608, −4.70088214682091588317923140610, −3.51776370803522277985800104413, −2.65115319203962331133573966535, −1.49997070978960279014676170433, −0.966974440801925629202920328063,
1.86833849006513229208962784990, 2.84291476468843045361797521246, 4.04176662784999960039386086690, 4.66940917096069291024120852549, 5.96222906089548492739250222347, 6.30895690681838775960257796523, 6.92881169641038235446270690396, 8.045565590114688624546582257866, 8.720352235270851815464179804329, 9.350359165837287918514765247327