L(s) = 1 | + (−0.5 − 0.866i)2-s + (0.309 − 0.951i)3-s + (−0.499 + 0.866i)4-s + (0.809 − 1.40i)5-s + (−0.978 + 0.207i)6-s + 0.999·8-s + (−0.809 − 0.587i)9-s − 1.61·10-s + (0.104 + 0.181i)11-s + (0.669 + 0.743i)12-s + (0.978 − 1.69i)13-s + (−1.08 − 1.20i)15-s + (−0.5 − 0.866i)16-s + (−0.104 + 0.994i)18-s + (0.809 + 1.40i)20-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.866i)2-s + (0.309 − 0.951i)3-s + (−0.499 + 0.866i)4-s + (0.809 − 1.40i)5-s + (−0.978 + 0.207i)6-s + 0.999·8-s + (−0.809 − 0.587i)9-s − 1.61·10-s + (0.104 + 0.181i)11-s + (0.669 + 0.743i)12-s + (0.978 − 1.69i)13-s + (−1.08 − 1.20i)15-s + (−0.5 − 0.866i)16-s + (−0.104 + 0.994i)18-s + (0.809 + 1.40i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2664 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.997 + 0.0697i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2664 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.997 + 0.0697i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.170083327\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.170083327\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 3 | \( 1 + (-0.309 + 0.951i)T \) |
| 37 | \( 1 - T \) |
good | 5 | \( 1 + (-0.809 + 1.40i)T + (-0.5 - 0.866i)T^{2} \) |
| 7 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.104 - 0.181i)T + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.978 + 1.69i)T + (-0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + (0.669 - 1.15i)T + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.978 - 1.69i)T + (-0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (-0.809 + 1.40i)T + (-0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + (0.309 - 0.535i)T + (-0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.913 + 1.58i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (0.913 - 1.58i)T + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + 0.209T + T^{2} \) |
| 79 | \( 1 + (0.309 + 0.535i)T + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.627700275435269704440780518661, −8.136471636763280044351723078232, −7.59245195072904525938047859753, −6.26780936476822113280540416313, −5.59775929368079165496528381608, −4.70088214682091588317923140610, −3.51776370803522277985800104413, −2.65115319203962331133573966535, −1.49997070978960279014676170433, −0.966974440801925629202920328063,
1.86833849006513229208962784990, 2.84291476468843045361797521246, 4.04176662784999960039386086690, 4.66940917096069291024120852549, 5.96222906089548492739250222347, 6.30895690681838775960257796523, 6.92881169641038235446270690396, 8.045565590114688624546582257866, 8.720352235270851815464179804329, 9.350359165837287918514765247327