Properties

Label 2664.1.bw.c.2515.3
Level 26642664
Weight 11
Character 2664.2515
Analytic conductor 1.3301.330
Analytic rank 00
Dimension 88
Projective image D15D_{15}
CM discriminant -296
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2664,1,Mod(1627,2664)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2664, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 4, 3]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2664.1627");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 2664=233237 2664 = 2^{3} \cdot 3^{2} \cdot 37
Weight: k k == 1 1
Character orbit: [χ][\chi] == 2664.bw (of order 66, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.329509193651.32950919365
Analytic rank: 00
Dimension: 88
Relative dimension: 44 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(ζ15)\Q(\zeta_{15})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8x7+x5x4+x3x+1 x^{8} - x^{7} + x^{5} - x^{4} + x^{3} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D15D_{15}
Projective field: Galois closure of Q[x]/(x15)\mathbb{Q}[x]/(x^{15} - \cdots)

Embedding invariants

Embedding label 2515.3
Root 0.913545+0.406737i0.913545 + 0.406737i of defining polynomial
Character χ\chi == 2664.2515
Dual form 2664.1.bw.c.1627.4

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.5000000.866025i)q2+(0.3090170.951057i)q3+(0.500000+0.866025i)q4+(0.8090171.40126i)q5+(0.978148+0.207912i)q6+1.00000q8+(0.8090170.587785i)q91.61803q10+(0.104528+0.181049i)q11+(0.669131+0.743145i)q12+(0.9781481.69420i)q13+(1.082681.20243i)q15+(0.5000000.866025i)q16+(0.104528+0.994522i)q18+(0.809017+1.40126i)q20+(0.1045280.181049i)q22+(0.669131+1.15897i)q23+(0.3090170.951057i)q24+(0.8090171.40126i)q251.95630q26+(0.809017+0.587785i)q27+(0.978148+1.69420i)q29+(0.500000+1.53884i)q30+(0.8090171.40126i)q31+(0.500000+0.866025i)q32+(0.2044890.0434654i)q33+(0.9135450.406737i)q36+1.00000q37+(1.309021.45381i)q39+(0.8090171.40126i)q40+(0.309017+0.535233i)q410.209057q44+(1.47815+0.658114i)q45+1.33826q46+(0.978148+0.207912i)q48+(0.500000+0.866025i)q49+(0.809017+1.40126i)q50+(0.978148+1.69420i)q52+(0.913545+0.406737i)q54+0.338261q55+(0.9781481.69420i)q58+(1.582680.336408i)q60+(0.9135451.58231i)q611.61803q62+1.00000q64+(1.582682.74128i)q65+(0.1398860.155360i)q66+(0.913545+1.58231i)q67+(0.895472+0.994522i)q69+(0.8090170.587785i)q720.209057q73+(0.5000000.866025i)q74+(1.58268+0.336408i)q75+(0.604528+1.86055i)q78+(0.3090170.535233i)q791.61803q80+(0.309017+0.951057i)q81+0.618034q82+(0.500000+0.866025i)q83+(1.913550.406737i)q87+(0.104528+0.181049i)q88+(1.30902+0.951057i)q90+(0.6691311.15897i)q92+(1.082681.20243i)q93+(0.669131+0.743145i)q96+1.00000q98+(0.02185240.207912i)q99+O(q100)q+(-0.500000 - 0.866025i) q^{2} +(0.309017 - 0.951057i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(0.809017 - 1.40126i) q^{5} +(-0.978148 + 0.207912i) q^{6} +1.00000 q^{8} +(-0.809017 - 0.587785i) q^{9} -1.61803 q^{10} +(0.104528 + 0.181049i) q^{11} +(0.669131 + 0.743145i) q^{12} +(0.978148 - 1.69420i) q^{13} +(-1.08268 - 1.20243i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(-0.104528 + 0.994522i) q^{18} +(0.809017 + 1.40126i) q^{20} +(0.104528 - 0.181049i) q^{22} +(-0.669131 + 1.15897i) q^{23} +(0.309017 - 0.951057i) q^{24} +(-0.809017 - 1.40126i) q^{25} -1.95630 q^{26} +(-0.809017 + 0.587785i) q^{27} +(0.978148 + 1.69420i) q^{29} +(-0.500000 + 1.53884i) q^{30} +(0.809017 - 1.40126i) q^{31} +(-0.500000 + 0.866025i) q^{32} +(0.204489 - 0.0434654i) q^{33} +(0.913545 - 0.406737i) q^{36} +1.00000 q^{37} +(-1.30902 - 1.45381i) q^{39} +(0.809017 - 1.40126i) q^{40} +(-0.309017 + 0.535233i) q^{41} -0.209057 q^{44} +(-1.47815 + 0.658114i) q^{45} +1.33826 q^{46} +(-0.978148 + 0.207912i) q^{48} +(-0.500000 + 0.866025i) q^{49} +(-0.809017 + 1.40126i) q^{50} +(0.978148 + 1.69420i) q^{52} +(0.913545 + 0.406737i) q^{54} +0.338261 q^{55} +(0.978148 - 1.69420i) q^{58} +(1.58268 - 0.336408i) q^{60} +(-0.913545 - 1.58231i) q^{61} -1.61803 q^{62} +1.00000 q^{64} +(-1.58268 - 2.74128i) q^{65} +(-0.139886 - 0.155360i) q^{66} +(-0.913545 + 1.58231i) q^{67} +(0.895472 + 0.994522i) q^{69} +(-0.809017 - 0.587785i) q^{72} -0.209057 q^{73} +(-0.500000 - 0.866025i) q^{74} +(-1.58268 + 0.336408i) q^{75} +(-0.604528 + 1.86055i) q^{78} +(-0.309017 - 0.535233i) q^{79} -1.61803 q^{80} +(0.309017 + 0.951057i) q^{81} +0.618034 q^{82} +(0.500000 + 0.866025i) q^{83} +(1.91355 - 0.406737i) q^{87} +(0.104528 + 0.181049i) q^{88} +(1.30902 + 0.951057i) q^{90} +(-0.669131 - 1.15897i) q^{92} +(-1.08268 - 1.20243i) q^{93} +(0.669131 + 0.743145i) q^{96} +1.00000 q^{98} +(0.0218524 - 0.207912i) q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q4q22q34q4+2q5+q6+8q82q94q10q11+q12q13+2q154q16+q18+2q20q22q232q242q25+2q26++9q99+O(q100) 8 q - 4 q^{2} - 2 q^{3} - 4 q^{4} + 2 q^{5} + q^{6} + 8 q^{8} - 2 q^{9} - 4 q^{10} - q^{11} + q^{12} - q^{13} + 2 q^{15} - 4 q^{16} + q^{18} + 2 q^{20} - q^{22} - q^{23} - 2 q^{24} - 2 q^{25} + 2 q^{26}+ \cdots + 9 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2664Z)×\left(\mathbb{Z}/2664\mathbb{Z}\right)^\times.

nn 12971297 13331333 19991999 23692369
χ(n)\chi(n) 1-1 1-1 1-1 e(13)e\left(\frac{1}{3}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −0.500000 0.866025i −0.500000 0.866025i
33 0.309017 0.951057i 0.309017 0.951057i
44 −0.500000 + 0.866025i −0.500000 + 0.866025i
55 0.809017 1.40126i 0.809017 1.40126i −0.104528 0.994522i 0.533333π-0.533333\pi
0.913545 0.406737i 0.133333π-0.133333\pi
66 −0.978148 + 0.207912i −0.978148 + 0.207912i
77 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
88 1.00000 1.00000
99 −0.809017 0.587785i −0.809017 0.587785i
1010 −1.61803 −1.61803
1111 0.104528 + 0.181049i 0.104528 + 0.181049i 0.913545 0.406737i 0.133333π-0.133333\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
1212 0.669131 + 0.743145i 0.669131 + 0.743145i
1313 0.978148 1.69420i 0.978148 1.69420i 0.309017 0.951057i 0.400000π-0.400000\pi
0.669131 0.743145i 0.266667π-0.266667\pi
1414 0 0
1515 −1.08268 1.20243i −1.08268 1.20243i
1616 −0.500000 0.866025i −0.500000 0.866025i
1717 0 0 1.00000 00
−1.00000 π\pi
1818 −0.104528 + 0.994522i −0.104528 + 0.994522i
1919 0 0 1.00000 00
−1.00000 π\pi
2020 0.809017 + 1.40126i 0.809017 + 1.40126i
2121 0 0
2222 0.104528 0.181049i 0.104528 0.181049i
2323 −0.669131 + 1.15897i −0.669131 + 1.15897i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
2424 0.309017 0.951057i 0.309017 0.951057i
2525 −0.809017 1.40126i −0.809017 1.40126i
2626 −1.95630 −1.95630
2727 −0.809017 + 0.587785i −0.809017 + 0.587785i
2828 0 0
2929 0.978148 + 1.69420i 0.978148 + 1.69420i 0.669131 + 0.743145i 0.266667π0.266667\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
3030 −0.500000 + 1.53884i −0.500000 + 1.53884i
3131 0.809017 1.40126i 0.809017 1.40126i −0.104528 0.994522i 0.533333π-0.533333\pi
0.913545 0.406737i 0.133333π-0.133333\pi
3232 −0.500000 + 0.866025i −0.500000 + 0.866025i
3333 0.204489 0.0434654i 0.204489 0.0434654i
3434 0 0
3535 0 0
3636 0.913545 0.406737i 0.913545 0.406737i
3737 1.00000 1.00000
3838 0 0
3939 −1.30902 1.45381i −1.30902 1.45381i
4040 0.809017 1.40126i 0.809017 1.40126i
4141 −0.309017 + 0.535233i −0.309017 + 0.535233i −0.978148 0.207912i 0.933333π-0.933333\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
4242 0 0
4343 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
4444 −0.209057 −0.209057
4545 −1.47815 + 0.658114i −1.47815 + 0.658114i
4646 1.33826 1.33826
4747 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
4848 −0.978148 + 0.207912i −0.978148 + 0.207912i
4949 −0.500000 + 0.866025i −0.500000 + 0.866025i
5050 −0.809017 + 1.40126i −0.809017 + 1.40126i
5151 0 0
5252 0.978148 + 1.69420i 0.978148 + 1.69420i
5353 0 0 1.00000 00
−1.00000 π\pi
5454 0.913545 + 0.406737i 0.913545 + 0.406737i
5555 0.338261 0.338261
5656 0 0
5757 0 0
5858 0.978148 1.69420i 0.978148 1.69420i
5959 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
6060 1.58268 0.336408i 1.58268 0.336408i
6161 −0.913545 1.58231i −0.913545 1.58231i −0.809017 0.587785i 0.800000π-0.800000\pi
−0.104528 0.994522i 0.533333π-0.533333\pi
6262 −1.61803 −1.61803
6363 0 0
6464 1.00000 1.00000
6565 −1.58268 2.74128i −1.58268 2.74128i
6666 −0.139886 0.155360i −0.139886 0.155360i
6767 −0.913545 + 1.58231i −0.913545 + 1.58231i −0.104528 + 0.994522i 0.533333π0.533333\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
6868 0 0
6969 0.895472 + 0.994522i 0.895472 + 0.994522i
7070 0 0
7171 0 0 1.00000 00
−1.00000 π\pi
7272 −0.809017 0.587785i −0.809017 0.587785i
7373 −0.209057 −0.209057 −0.104528 0.994522i 0.533333π-0.533333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
7474 −0.500000 0.866025i −0.500000 0.866025i
7575 −1.58268 + 0.336408i −1.58268 + 0.336408i
7676 0 0
7777 0 0
7878 −0.604528 + 1.86055i −0.604528 + 1.86055i
7979 −0.309017 0.535233i −0.309017 0.535233i 0.669131 0.743145i 0.266667π-0.266667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
8080 −1.61803 −1.61803
8181 0.309017 + 0.951057i 0.309017 + 0.951057i
8282 0.618034 0.618034
8383 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
8484 0 0
8585 0 0
8686 0 0
8787 1.91355 0.406737i 1.91355 0.406737i
8888 0.104528 + 0.181049i 0.104528 + 0.181049i
8989 0 0 1.00000 00
−1.00000 π\pi
9090 1.30902 + 0.951057i 1.30902 + 0.951057i
9191 0 0
9292 −0.669131 1.15897i −0.669131 1.15897i
9393 −1.08268 1.20243i −1.08268 1.20243i
9494 0 0
9595 0 0
9696 0.669131 + 0.743145i 0.669131 + 0.743145i
9797 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
9898 1.00000 1.00000
9999 0.0218524 0.207912i 0.0218524 0.207912i
100100 1.61803 1.61803
101101 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
102102 0 0
103103 −0.913545 + 1.58231i −0.913545 + 1.58231i −0.104528 + 0.994522i 0.533333π0.533333\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
104104 0.978148 1.69420i 0.978148 1.69420i
105105 0 0
106106 0 0
107107 1.33826 1.33826 0.669131 0.743145i 0.266667π-0.266667\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
108108 −0.104528 0.994522i −0.104528 0.994522i
109109 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
110110 −0.169131 0.292943i −0.169131 0.292943i
111111 0.309017 0.951057i 0.309017 0.951057i
112112 0 0
113113 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
114114 0 0
115115 1.08268 + 1.87525i 1.08268 + 1.87525i
116116 −1.95630 −1.95630
117117 −1.78716 + 0.795697i −1.78716 + 0.795697i
118118 0 0
119119 0 0
120120 −1.08268 1.20243i −1.08268 1.20243i
121121 0.478148 0.828176i 0.478148 0.828176i
122122 −0.913545 + 1.58231i −0.913545 + 1.58231i
123123 0.413545 + 0.459289i 0.413545 + 0.459289i
124124 0.809017 + 1.40126i 0.809017 + 1.40126i
125125 −1.00000 −1.00000
126126 0 0
127127 0 0 1.00000 00
−1.00000 π\pi
128128 −0.500000 0.866025i −0.500000 0.866025i
129129 0 0
130130 −1.58268 + 2.74128i −1.58268 + 2.74128i
131131 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
132132 −0.0646021 + 0.198825i −0.0646021 + 0.198825i
133133 0 0
134134 1.82709 1.82709
135135 0.169131 + 1.60917i 0.169131 + 1.60917i
136136 0 0
137137 0.809017 + 1.40126i 0.809017 + 1.40126i 0.913545 + 0.406737i 0.133333π0.133333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
138138 0.413545 1.27276i 0.413545 1.27276i
139139 −0.669131 + 1.15897i −0.669131 + 1.15897i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
140140 0 0
141141 0 0
142142 0 0
143143 0.408977 0.408977
144144 −0.104528 + 0.994522i −0.104528 + 0.994522i
145145 3.16535 3.16535
146146 0.104528 + 0.181049i 0.104528 + 0.181049i
147147 0.669131 + 0.743145i 0.669131 + 0.743145i
148148 −0.500000 + 0.866025i −0.500000 + 0.866025i
149149 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
150150 1.08268 + 1.20243i 1.08268 + 1.20243i
151151 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
152152 0 0
153153 0 0
154154 0 0
155155 −1.30902 2.26728i −1.30902 2.26728i
156156 1.91355 0.406737i 1.91355 0.406737i
157157 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
158158 −0.309017 + 0.535233i −0.309017 + 0.535233i
159159 0 0
160160 0.809017 + 1.40126i 0.809017 + 1.40126i
161161 0 0
162162 0.669131 0.743145i 0.669131 0.743145i
163163 0 0 1.00000 00
−1.00000 π\pi
164164 −0.309017 0.535233i −0.309017 0.535233i
165165 0.104528 0.321706i 0.104528 0.321706i
166166 0.500000 0.866025i 0.500000 0.866025i
167167 −0.913545 + 1.58231i −0.913545 + 1.58231i −0.104528 + 0.994522i 0.533333π0.533333\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
168168 0 0
169169 −1.41355 2.44833i −1.41355 2.44833i
170170 0 0
171171 0 0
172172 0 0
173173 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
174174 −1.30902 1.45381i −1.30902 1.45381i
175175 0 0
176176 0.104528 0.181049i 0.104528 0.181049i
177177 0 0
178178 0 0
179179 0 0 1.00000 00
−1.00000 π\pi
180180 0.169131 1.60917i 0.169131 1.60917i
181181 0 0 1.00000 00
−1.00000 π\pi
182182 0 0
183183 −1.78716 + 0.379874i −1.78716 + 0.379874i
184184 −0.669131 + 1.15897i −0.669131 + 1.15897i
185185 0.809017 1.40126i 0.809017 1.40126i
186186 −0.500000 + 1.53884i −0.500000 + 1.53884i
187187 0 0
188188 0 0
189189 0 0
190190 0 0
191191 −0.913545 1.58231i −0.913545 1.58231i −0.809017 0.587785i 0.800000π-0.800000\pi
−0.104528 0.994522i 0.533333π-0.533333\pi
192192 0.309017 0.951057i 0.309017 0.951057i
193193 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
194194 0 0
195195 −3.09618 + 0.658114i −3.09618 + 0.658114i
196196 −0.500000 0.866025i −0.500000 0.866025i
197197 0 0 1.00000 00
−1.00000 π\pi
198198 −0.190983 + 0.0850311i −0.190983 + 0.0850311i
199199 2.00000 2.00000 1.00000 00
1.00000 00
200200 −0.809017 1.40126i −0.809017 1.40126i
201201 1.22256 + 1.35779i 1.22256 + 1.35779i
202202 0 0
203203 0 0
204204 0 0
205205 0.500000 + 0.866025i 0.500000 + 0.866025i
206206 1.82709 1.82709
207207 1.22256 0.544320i 1.22256 0.544320i
208208 −1.95630 −1.95630
209209 0 0
210210 0 0
211211 0.104528 0.181049i 0.104528 0.181049i −0.809017 0.587785i 0.800000π-0.800000\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
212212 0 0
213213 0 0
214214 −0.669131 1.15897i −0.669131 1.15897i
215215 0 0
216216 −0.809017 + 0.587785i −0.809017 + 0.587785i
217217 0 0
218218 0.500000 + 0.866025i 0.500000 + 0.866025i
219219 −0.0646021 + 0.198825i −0.0646021 + 0.198825i
220220 −0.169131 + 0.292943i −0.169131 + 0.292943i
221221 0 0
222222 −0.978148 + 0.207912i −0.978148 + 0.207912i
223223 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
224224 0 0
225225 −0.169131 + 1.60917i −0.169131 + 1.60917i
226226 0 0
227227 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
228228 0 0
229229 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
230230 1.08268 1.87525i 1.08268 1.87525i
231231 0 0
232232 0.978148 + 1.69420i 0.978148 + 1.69420i
233233 −1.95630 −1.95630 −0.978148 0.207912i 0.933333π-0.933333\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
234234 1.58268 + 1.14988i 1.58268 + 1.14988i
235235 0 0
236236 0 0
237237 −0.604528 + 0.128496i −0.604528 + 0.128496i
238238 0 0
239239 0.104528 0.181049i 0.104528 0.181049i −0.809017 0.587785i 0.800000π-0.800000\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
240240 −0.500000 + 1.53884i −0.500000 + 1.53884i
241241 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
242242 −0.956295 −0.956295
243243 1.00000 1.00000
244244 1.82709 1.82709
245245 0.809017 + 1.40126i 0.809017 + 1.40126i
246246 0.190983 0.587785i 0.190983 0.587785i
247247 0 0
248248 0.809017 1.40126i 0.809017 1.40126i
249249 0.978148 0.207912i 0.978148 0.207912i
250250 0.500000 + 0.866025i 0.500000 + 0.866025i
251251 0 0 1.00000 00
−1.00000 π\pi
252252 0 0
253253 −0.279773 −0.279773
254254 0 0
255255 0 0
256256 −0.500000 + 0.866025i −0.500000 + 0.866025i
257257 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
258258 0 0
259259 0 0
260260 3.16535 3.16535
261261 0.204489 1.94558i 0.204489 1.94558i
262262 0 0
263263 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
264264 0.204489 0.0434654i 0.204489 0.0434654i
265265 0 0
266266 0 0
267267 0 0
268268 −0.913545 1.58231i −0.913545 1.58231i
269269 0 0 1.00000 00
−1.00000 π\pi
270270 1.30902 0.951057i 1.30902 0.951057i
271271 0 0 1.00000 00
−1.00000 π\pi
272272 0 0
273273 0 0
274274 0.809017 1.40126i 0.809017 1.40126i
275275 0.169131 0.292943i 0.169131 0.292943i
276276 −1.30902 + 0.278240i −1.30902 + 0.278240i
277277 0.104528 + 0.181049i 0.104528 + 0.181049i 0.913545 0.406737i 0.133333π-0.133333\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
278278 1.33826 1.33826
279279 −1.47815 + 0.658114i −1.47815 + 0.658114i
280280 0 0
281281 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
282282 0 0
283283 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
284284 0 0
285285 0 0
286286 −0.204489 0.354185i −0.204489 0.354185i
287287 0 0
288288 0.913545 0.406737i 0.913545 0.406737i
289289 1.00000 1.00000
290290 −1.58268 2.74128i −1.58268 2.74128i
291291 0 0
292292 0.104528 0.181049i 0.104528 0.181049i
293293 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
294294 0.309017 0.951057i 0.309017 0.951057i
295295 0 0
296296 1.00000 1.00000
297297 −0.190983 0.0850311i −0.190983 0.0850311i
298298 0 0
299299 1.30902 + 2.26728i 1.30902 + 2.26728i
300300 0.500000 1.53884i 0.500000 1.53884i
301301 0 0
302302 0 0
303303 0 0
304304 0 0
305305 −2.95630 −2.95630
306306 0 0
307307 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
308308 0 0
309309 1.22256 + 1.35779i 1.22256 + 1.35779i
310310 −1.30902 + 2.26728i −1.30902 + 2.26728i
311311 0.978148 1.69420i 0.978148 1.69420i 0.309017 0.951057i 0.400000π-0.400000\pi
0.669131 0.743145i 0.266667π-0.266667\pi
312312 −1.30902 1.45381i −1.30902 1.45381i
313313 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
314314 0 0
315315 0 0
316316 0.618034 0.618034
317317 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
318318 0 0
319319 −0.204489 + 0.354185i −0.204489 + 0.354185i
320320 0.809017 1.40126i 0.809017 1.40126i
321321 0.413545 1.27276i 0.413545 1.27276i
322322 0 0
323323 0 0
324324 −0.978148 0.207912i −0.978148 0.207912i
325325 −3.16535 −3.16535
326326 0 0
327327 −0.309017 + 0.951057i −0.309017 + 0.951057i
328328 −0.309017 + 0.535233i −0.309017 + 0.535233i
329329 0 0
330330 −0.330869 + 0.0703285i −0.330869 + 0.0703285i
331331 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
332332 −1.00000 −1.00000
333333 −0.809017 0.587785i −0.809017 0.587785i
334334 1.82709 1.82709
335335 1.47815 + 2.56023i 1.47815 + 2.56023i
336336 0 0
337337 0.104528 0.181049i 0.104528 0.181049i −0.809017 0.587785i 0.800000π-0.800000\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
338338 −1.41355 + 2.44833i −1.41355 + 2.44833i
339339 0 0
340340 0 0
341341 0.338261 0.338261
342342 0 0
343343 0 0
344344 0 0
345345 2.11803 0.450202i 2.11803 0.450202i
346346 0 0
347347 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
348348 −0.604528 + 1.86055i −0.604528 + 1.86055i
349349 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
350350 0 0
351351 0.204489 + 1.94558i 0.204489 + 1.94558i
352352 −0.209057 −0.209057
353353 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 0 0 1.00000 00
−1.00000 π\pi
360360 −1.47815 + 0.658114i −1.47815 + 0.658114i
361361 1.00000 1.00000
362362 0 0
363363 −0.639886 0.710666i −0.639886 0.710666i
364364 0 0
365365 −0.169131 + 0.292943i −0.169131 + 0.292943i
366366 1.22256 + 1.35779i 1.22256 + 1.35779i
367367 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
368368 1.33826 1.33826
369369 0.564602 0.251377i 0.564602 0.251377i
370370 −1.61803 −1.61803
371371 0 0
372372 1.58268 0.336408i 1.58268 0.336408i
373373 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
374374 0 0
375375 −0.309017 + 0.951057i −0.309017 + 0.951057i
376376 0 0
377377 3.82709 3.82709
378378 0 0
379379 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
380380 0 0
381381 0 0
382382 −0.913545 + 1.58231i −0.913545 + 1.58231i
383383 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
384384 −0.978148 + 0.207912i −0.978148 + 0.207912i
385385 0 0
386386 0 0
387387 0 0
388388 0 0
389389 −0.309017 0.535233i −0.309017 0.535233i 0.669131 0.743145i 0.266667π-0.266667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
390390 2.11803 + 2.35232i 2.11803 + 2.35232i
391391 0 0
392392 −0.500000 + 0.866025i −0.500000 + 0.866025i
393393 0 0
394394 0 0
395395 −1.00000 −1.00000
396396 0.169131 + 0.122881i 0.169131 + 0.122881i
397397 0 0 1.00000 00
−1.00000 π\pi
398398 −1.00000 1.73205i −1.00000 1.73205i
399399 0 0
400400 −0.809017 + 1.40126i −0.809017 + 1.40126i
401401 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
402402 0.564602 1.73767i 0.564602 1.73767i
403403 −1.58268 2.74128i −1.58268 2.74128i
404404 0 0
405405 1.58268 + 0.336408i 1.58268 + 0.336408i
406406 0 0
407407 0.104528 + 0.181049i 0.104528 + 0.181049i
408408 0 0
409409 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
410410 0.500000 0.866025i 0.500000 0.866025i
411411 1.58268 0.336408i 1.58268 0.336408i
412412 −0.913545 1.58231i −0.913545 1.58231i
413413 0 0
414414 −1.08268 0.786610i −1.08268 0.786610i
415415 1.61803 1.61803
416416 0.978148 + 1.69420i 0.978148 + 1.69420i
417417 0.895472 + 0.994522i 0.895472 + 0.994522i
418418 0 0
419419 0.978148 1.69420i 0.978148 1.69420i 0.309017 0.951057i 0.400000π-0.400000\pi
0.669131 0.743145i 0.266667π-0.266667\pi
420420 0 0
421421 −0.669131 1.15897i −0.669131 1.15897i −0.978148 0.207912i 0.933333π-0.933333\pi
0.309017 0.951057i 0.400000π-0.400000\pi
422422 −0.209057 −0.209057
423423 0 0
424424 0 0
425425 0 0
426426 0 0
427427 0 0
428428 −0.669131 + 1.15897i −0.669131 + 1.15897i
429429 0.126381 0.388960i 0.126381 0.388960i
430430 0 0
431431 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
432432 0.913545 + 0.406737i 0.913545 + 0.406737i
433433 1.33826 1.33826 0.669131 0.743145i 0.266667π-0.266667\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
434434 0 0
435435 0.978148 3.01043i 0.978148 3.01043i
436436 0.500000 0.866025i 0.500000 0.866025i
437437 0 0
438438 0.204489 0.0434654i 0.204489 0.0434654i
439439 −0.669131 1.15897i −0.669131 1.15897i −0.978148 0.207912i 0.933333π-0.933333\pi
0.309017 0.951057i 0.400000π-0.400000\pi
440440 0.338261 0.338261
441441 0.913545 0.406737i 0.913545 0.406737i
442442 0 0
443443 −0.913545 1.58231i −0.913545 1.58231i −0.809017 0.587785i 0.800000π-0.800000\pi
−0.104528 0.994522i 0.533333π-0.533333\pi
444444 0.669131 + 0.743145i 0.669131 + 0.743145i
445445 0 0
446446 0 0
447447 0 0
448448 0 0
449449 0 0 1.00000 00
−1.00000 π\pi
450450 1.47815 0.658114i 1.47815 0.658114i
451451 −0.129204 −0.129204
452452 0 0
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
458458 0 0
459459 0 0
460460 −2.16535 −2.16535
461461 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
462462 0 0
463463 0.978148 1.69420i 0.978148 1.69420i 0.309017 0.951057i 0.400000π-0.400000\pi
0.669131 0.743145i 0.266667π-0.266667\pi
464464 0.978148 1.69420i 0.978148 1.69420i
465465 −2.56082 + 0.544320i −2.56082 + 0.544320i
466466 0.978148 + 1.69420i 0.978148 + 1.69420i
467467 0 0 1.00000 00
−1.00000 π\pi
468468 0.204489 1.94558i 0.204489 1.94558i
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 0 0
474474 0.413545 + 0.459289i 0.413545 + 0.459289i
475475 0 0
476476 0 0
477477 0 0
478478 −0.209057 −0.209057
479479 −0.309017 0.535233i −0.309017 0.535233i 0.669131 0.743145i 0.266667π-0.266667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
480480 1.58268 0.336408i 1.58268 0.336408i
481481 0.978148 1.69420i 0.978148 1.69420i
482482 0 0
483483 0 0
484484 0.478148 + 0.828176i 0.478148 + 0.828176i
485485 0 0
486486 −0.500000 0.866025i −0.500000 0.866025i
487487 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
488488 −0.913545 1.58231i −0.913545 1.58231i
489489 0 0
490490 0.809017 1.40126i 0.809017 1.40126i
491491 −0.669131 + 1.15897i −0.669131 + 1.15897i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
492492 −0.604528 + 0.128496i −0.604528 + 0.128496i
493493 0 0
494494 0 0
495495 −0.273659 0.198825i −0.273659 0.198825i
496496 −1.61803 −1.61803
497497 0 0
498498 −0.669131 0.743145i −0.669131 0.743145i
499499 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
500500 0.500000 0.866025i 0.500000 0.866025i
501501 1.22256 + 1.35779i 1.22256 + 1.35779i
502502 0 0
503503 1.82709 1.82709 0.913545 0.406737i 0.133333π-0.133333\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
504504 0 0
505505 0 0
506506 0.139886 + 0.242290i 0.139886 + 0.242290i
507507 −2.76531 + 0.587785i −2.76531 + 0.587785i
508508 0 0
509509 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
510510 0 0
511511 0 0
512512 1.00000 1.00000
513513 0 0
514514 0 0
515515 1.47815 + 2.56023i 1.47815 + 2.56023i
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 −1.58268 2.74128i −1.58268 2.74128i
521521 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
522522 −1.78716 + 0.795697i −1.78716 + 0.795697i
523523 0 0 1.00000 00
−1.00000 π\pi
524524 0 0
525525 0 0
526526 0 0
527527 0 0
528528 −0.139886 0.155360i −0.139886 0.155360i
529529 −0.395472 0.684977i −0.395472 0.684977i
530530 0 0
531531 0 0
532532 0 0
533533 0.604528 + 1.04707i 0.604528 + 1.04707i
534534 0 0
535535 1.08268 1.87525i 1.08268 1.87525i
536536 −0.913545 + 1.58231i −0.913545 + 1.58231i
537537 0 0
538538 0 0
539539 −0.209057 −0.209057
540540 −1.47815 0.658114i −1.47815 0.658114i
541541 1.82709 1.82709 0.913545 0.406737i 0.133333π-0.133333\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
542542 0 0
543543 0 0
544544 0 0
545545 −0.809017 + 1.40126i −0.809017 + 1.40126i
546546 0 0
547547 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
548548 −1.61803 −1.61803
549549 −0.190983 + 1.81708i −0.190983 + 1.81708i
550550 −0.338261 −0.338261
551551 0 0
552552 0.895472 + 0.994522i 0.895472 + 0.994522i
553553 0 0
554554 0.104528 0.181049i 0.104528 0.181049i
555555 −1.08268 1.20243i −1.08268 1.20243i
556556 −0.669131 1.15897i −0.669131 1.15897i
557557 1.82709 1.82709 0.913545 0.406737i 0.133333π-0.133333\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
558558 1.30902 + 0.951057i 1.30902 + 0.951057i
559559 0 0
560560 0 0
561561 0 0
562562 0 0
563563 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
564564 0 0
565565 0 0
566566 0 0
567567 0 0
568568 0 0
569569 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
570570 0 0
571571 −0.309017 + 0.535233i −0.309017 + 0.535233i −0.978148 0.207912i 0.933333π-0.933333\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
572572 −0.204489 + 0.354185i −0.204489 + 0.354185i
573573 −1.78716 + 0.379874i −1.78716 + 0.379874i
574574 0 0
575575 2.16535 2.16535
576576 −0.809017 0.587785i −0.809017 0.587785i
577577 0 0 1.00000 00
−1.00000 π\pi
578578 −0.500000 0.866025i −0.500000 0.866025i
579579 0 0
580580 −1.58268 + 2.74128i −1.58268 + 2.74128i
581581 0 0
582582 0 0
583583 0 0
584584 −0.209057 −0.209057
585585 −0.330869 + 3.14801i −0.330869 + 3.14801i
586586 0 0
587587 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
588588 −0.978148 + 0.207912i −0.978148 + 0.207912i
589589 0 0
590590 0 0
591591 0 0
592592 −0.500000 0.866025i −0.500000 0.866025i
593593 −0.209057 −0.209057 −0.104528 0.994522i 0.533333π-0.533333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
594594 0.0218524 + 0.207912i 0.0218524 + 0.207912i
595595 0 0
596596 0 0
597597 0.618034 1.90211i 0.618034 1.90211i
598598 1.30902 2.26728i 1.30902 2.26728i
599599 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
600600 −1.58268 + 0.336408i −1.58268 + 0.336408i
601601 0.809017 + 1.40126i 0.809017 + 1.40126i 0.913545 + 0.406737i 0.133333π0.133333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
602602 0 0
603603 1.66913 0.743145i 1.66913 0.743145i
604604 0 0
605605 −0.773659 1.34002i −0.773659 1.34002i
606606 0 0
607607 −0.669131 + 1.15897i −0.669131 + 1.15897i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
608608 0 0
609609 0 0
610610 1.47815 + 2.56023i 1.47815 + 2.56023i
611611 0 0
612612 0 0
613613 0 0 1.00000 00
−1.00000 π\pi
614614 −0.309017 0.535233i −0.309017 0.535233i
615615 0.978148 0.207912i 0.978148 0.207912i
616616 0 0
617617 −0.669131 + 1.15897i −0.669131 + 1.15897i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
618618 0.564602 1.73767i 0.564602 1.73767i
619619 0.809017 + 1.40126i 0.809017 + 1.40126i 0.913545 + 0.406737i 0.133333π0.133333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
620620 2.61803 2.61803
621621 −0.139886 1.33093i −0.139886 1.33093i
622622 −1.95630 −1.95630
623623 0 0
624624 −0.604528 + 1.86055i −0.604528 + 1.86055i
625625 0 0
626626 0 0
627627 0 0
628628 0 0
629629 0 0
630630 0 0
631631 −1.95630 −1.95630 −0.978148 0.207912i 0.933333π-0.933333\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
632632 −0.309017 0.535233i −0.309017 0.535233i
633633 −0.139886 0.155360i −0.139886 0.155360i
634634 0 0
635635 0 0
636636 0 0
637637 0.978148 + 1.69420i 0.978148 + 1.69420i
638638 0.408977 0.408977
639639 0 0
640640 −1.61803 −1.61803
641641 −0.669131 1.15897i −0.669131 1.15897i −0.978148 0.207912i 0.933333π-0.933333\pi
0.309017 0.951057i 0.400000π-0.400000\pi
642642 −1.30902 + 0.278240i −1.30902 + 0.278240i
643643 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
644644 0 0
645645 0 0
646646 0 0
647647 −1.95630 −1.95630 −0.978148 0.207912i 0.933333π-0.933333\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
648648 0.309017 + 0.951057i 0.309017 + 0.951057i
649649 0 0
650650 1.58268 + 2.74128i 1.58268 + 2.74128i
651651 0 0
652652 0 0
653653 −0.669131 + 1.15897i −0.669131 + 1.15897i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
654654 0.978148 0.207912i 0.978148 0.207912i
655655 0 0
656656 0.618034 0.618034
657657 0.169131 + 0.122881i 0.169131 + 0.122881i
658658 0 0
659659 −0.309017 0.535233i −0.309017 0.535233i 0.669131 0.743145i 0.266667π-0.266667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
660660 0.226341 + 0.251377i 0.226341 + 0.251377i
661661 −0.309017 + 0.535233i −0.309017 + 0.535233i −0.978148 0.207912i 0.933333π-0.933333\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
662662 0 0
663663 0 0
664664 0.500000 + 0.866025i 0.500000 + 0.866025i
665665 0 0
666666 −0.104528 + 0.994522i −0.104528 + 0.994522i
667667 −2.61803 −2.61803
668668 −0.913545 1.58231i −0.913545 1.58231i
669669 0 0
670670 1.47815 2.56023i 1.47815 2.56023i
671671 0.190983 0.330792i 0.190983 0.330792i
672672 0 0
673673 −0.669131 1.15897i −0.669131 1.15897i −0.978148 0.207912i 0.933333π-0.933333\pi
0.309017 0.951057i 0.400000π-0.400000\pi
674674 −0.209057 −0.209057
675675 1.47815 + 0.658114i 1.47815 + 0.658114i
676676 2.82709 2.82709
677677 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 −0.169131 0.292943i −0.169131 0.292943i
683683 0 0 1.00000 00
−1.00000 π\pi
684684 0 0
685685 2.61803 2.61803
686686 0 0
687687 0 0
688688 0 0
689689 0 0
690690 −1.44890 1.60917i −1.44890 1.60917i
691691 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
692692 0 0
693693 0 0
694694 0 0
695695 1.08268 + 1.87525i 1.08268 + 1.87525i
696696 1.91355 0.406737i 1.91355 0.406737i
697697 0 0
698698 0 0
699699 −0.604528 + 1.86055i −0.604528 + 1.86055i
700700 0 0
701701 −0.209057 −0.209057 −0.104528 0.994522i 0.533333π-0.533333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
702702 1.58268 1.14988i 1.58268 1.14988i
703703 0 0
704704 0.104528 + 0.181049i 0.104528 + 0.181049i
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 0.104528 + 0.181049i 0.104528 + 0.181049i 0.913545 0.406737i 0.133333π-0.133333\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
710710 0 0
711711 −0.0646021 + 0.614648i −0.0646021 + 0.614648i
712712 0 0
713713 1.08268 + 1.87525i 1.08268 + 1.87525i
714714 0 0
715715 0.330869 0.573083i 0.330869 0.573083i
716716 0 0
717717 −0.139886 0.155360i −0.139886 0.155360i
718718 0 0
719719 0 0 1.00000 00
−1.00000 π\pi
720720 1.30902 + 0.951057i 1.30902 + 0.951057i
721721 0 0
722722 −0.500000 0.866025i −0.500000 0.866025i
723723 0 0
724724 0 0
725725 1.58268 2.74128i 1.58268 2.74128i
726726 −0.295511 + 0.909491i −0.295511 + 0.909491i
727727 0.104528 + 0.181049i 0.104528 + 0.181049i 0.913545 0.406737i 0.133333π-0.133333\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
728728 0 0
729729 0.309017 0.951057i 0.309017 0.951057i
730730 0.338261 0.338261
731731 0 0
732732 0.564602 1.73767i 0.564602 1.73767i
733733 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
734734 0 0
735735 1.58268 0.336408i 1.58268 0.336408i
736736 −0.669131 1.15897i −0.669131 1.15897i
737737 −0.381966 −0.381966
738738 −0.500000 0.363271i −0.500000 0.363271i
739739 −0.209057 −0.209057 −0.104528 0.994522i 0.533333π-0.533333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
740740 0.809017 + 1.40126i 0.809017 + 1.40126i
741741 0 0
742742 0 0
743743 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
744744 −1.08268 1.20243i −1.08268 1.20243i
745745 0 0
746746 0 0
747747 0.104528 0.994522i 0.104528 0.994522i
748748 0 0
749749 0 0
750750 0.978148 0.207912i 0.978148 0.207912i
751751 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
752752 0 0
753753 0 0
754754 −1.91355 3.31436i −1.91355 3.31436i
755755 0 0
756756 0 0
757757 1.82709 1.82709 0.913545 0.406737i 0.133333π-0.133333\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
758758 −0.309017 0.535233i −0.309017 0.535233i
759759 −0.0864545 + 0.266080i −0.0864545 + 0.266080i
760760 0 0
761761 −0.309017 + 0.535233i −0.309017 + 0.535233i −0.978148 0.207912i 0.933333π-0.933333\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
762762 0 0
763763 0 0
764764 1.82709 1.82709
765765 0 0
766766 −1.00000 −1.00000
767767 0 0
768768 0.669131 + 0.743145i 0.669131 + 0.743145i
769769 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
770770 0 0
771771 0 0
772772 0 0
773773 0 0 1.00000 00
−1.00000 π\pi
774774 0 0
775775 −2.61803 −2.61803
776776 0 0
777777 0 0
778778 −0.309017 + 0.535233i −0.309017 + 0.535233i
779779 0 0
780780 0.978148 3.01043i 0.978148 3.01043i
781781 0 0
782782 0 0
783783 −1.78716 0.795697i −1.78716 0.795697i
784784 1.00000 1.00000
785785 0 0
786786 0 0
787787 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
788788 0 0
789789 0 0
790790 0.500000 + 0.866025i 0.500000 + 0.866025i
791791 0 0
792792 0.0218524 0.207912i 0.0218524 0.207912i
793793 −3.57433 −3.57433
794794 0 0
795795 0 0
796796 −1.00000 + 1.73205i −1.00000 + 1.73205i
797797 −0.309017 + 0.535233i −0.309017 + 0.535233i −0.978148 0.207912i 0.933333π-0.933333\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
798798 0 0
799799 0 0
800800 1.61803 1.61803
801801 0 0
802802 0 0
803803 −0.0218524 0.0378495i −0.0218524 0.0378495i
804804 −1.78716 + 0.379874i −1.78716 + 0.379874i
805805 0 0
806806 −1.58268 + 2.74128i −1.58268 + 2.74128i
807807 0 0
808808 0 0
809809 0 0 1.00000 00
−1.00000 π\pi
810810 −0.500000 1.53884i −0.500000 1.53884i
811811 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
812812 0 0
813813 0 0
814814 0.104528 0.181049i 0.104528 0.181049i
815815 0 0
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 −1.00000 −1.00000
821821 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
822822 −1.08268 1.20243i −1.08268 1.20243i
823823 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
824824 −0.913545 + 1.58231i −0.913545 + 1.58231i
825825 −0.226341 0.251377i −0.226341 0.251377i
826826 0 0
827827 0 0 1.00000 00
−1.00000 π\pi
828828 −0.139886 + 1.33093i −0.139886 + 1.33093i
829829 1.33826 1.33826 0.669131 0.743145i 0.266667π-0.266667\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
830830 −0.809017 1.40126i −0.809017 1.40126i
831831 0.204489 0.0434654i 0.204489 0.0434654i
832832 0.978148 1.69420i 0.978148 1.69420i
833833 0 0
834834 0.413545 1.27276i 0.413545 1.27276i
835835 1.47815 + 2.56023i 1.47815 + 2.56023i
836836 0 0
837837 0.169131 + 1.60917i 0.169131 + 1.60917i
838838 −1.95630 −1.95630
839839 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
840840 0 0
841841 −1.41355 + 2.44833i −1.41355 + 2.44833i
842842 −0.669131 + 1.15897i −0.669131 + 1.15897i
843843 0 0
844844 0.104528 + 0.181049i 0.104528 + 0.181049i
845845 −4.57433 −4.57433
846846 0 0
847847 0 0
848848 0 0
849849 0 0
850850 0 0
851851 −0.669131 + 1.15897i −0.669131 + 1.15897i
852852 0 0
853853 0.809017 + 1.40126i 0.809017 + 1.40126i 0.913545 + 0.406737i 0.133333π0.133333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
854854 0 0
855855 0 0
856856 1.33826 1.33826
857857 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
858858 −0.400040 + 0.0850311i −0.400040 + 0.0850311i
859859 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
860860 0 0
861861 0 0
862862 0.500000 + 0.866025i 0.500000 + 0.866025i
863863 0 0 1.00000 00
−1.00000 π\pi
864864 −0.104528 0.994522i −0.104528 0.994522i
865865 0 0
866866 −0.669131 1.15897i −0.669131 1.15897i
867867 0.309017 0.951057i 0.309017 0.951057i
868868 0 0
869869 0.0646021 0.111894i 0.0646021 0.111894i
870870 −3.09618 + 0.658114i −3.09618 + 0.658114i
871871 1.78716 + 3.09546i 1.78716 + 3.09546i
872872 −1.00000 −1.00000
873873 0 0
874874 0 0
875875 0 0
876876 −0.139886 0.155360i −0.139886 0.155360i
877877 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
878878 −0.669131 + 1.15897i −0.669131 + 1.15897i
879879 0 0
880880 −0.169131 0.292943i −0.169131 0.292943i
881881 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
882882 −0.809017 0.587785i −0.809017 0.587785i
883883 0 0 1.00000 00
−1.00000 π\pi
884884 0 0
885885 0 0
886886 −0.913545 + 1.58231i −0.913545 + 1.58231i
887887 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
888888 0.309017 0.951057i 0.309017 0.951057i
889889 0 0
890890 0 0
891891 −0.139886 + 0.155360i −0.139886 + 0.155360i
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 0 0
897897 2.56082 0.544320i 2.56082 0.544320i
898898 0 0
899899 3.16535 3.16535
900900 −1.30902 0.951057i −1.30902 0.951057i
901901 0 0
902902 0.0646021 + 0.111894i 0.0646021 + 0.111894i
903903 0 0
904904 0 0
905905 0 0
906906 0 0
907907 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
908908 0 0
909909 0 0
910910 0 0
911911 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
912912 0 0
913913 −0.104528 + 0.181049i −0.104528 + 0.181049i
914914 0 0
915915 −0.913545 + 2.81160i −0.913545 + 2.81160i
916916 0 0
917917 0 0
918918 0 0
919919 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
920920 1.08268 + 1.87525i 1.08268 + 1.87525i
921921 0.190983 0.587785i 0.190983 0.587785i
922922 0.500000 0.866025i 0.500000 0.866025i
923923 0 0
924924 0 0
925925 −0.809017 1.40126i −0.809017 1.40126i
926926 −1.95630 −1.95630
927927 1.66913 0.743145i 1.66913 0.743145i
928928 −1.95630 −1.95630
929929 0.104528 + 0.181049i 0.104528 + 0.181049i 0.913545 0.406737i 0.133333π-0.133333\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
930930 1.75181 + 1.94558i 1.75181 + 1.94558i
931931 0 0
932932 0.978148 1.69420i 0.978148 1.69420i
933933 −1.30902 1.45381i −1.30902 1.45381i
934934 0 0
935935 0 0
936936 −1.78716 + 0.795697i −1.78716 + 0.795697i
937937 −1.95630 −1.95630 −0.978148 0.207912i 0.933333π-0.933333\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
938938 0 0
939939 0 0
940940 0 0
941941 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
942942 0 0
943943 −0.413545 0.716282i −0.413545 0.716282i
944944 0 0
945945 0 0
946946 0 0
947947 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
948948 0.190983 0.587785i 0.190983 0.587785i
949949 −0.204489 + 0.354185i −0.204489 + 0.354185i
950950 0 0
951951 0 0
952952 0 0
953953 −0.209057 −0.209057 −0.104528 0.994522i 0.533333π-0.533333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
954954 0 0
955955 −2.95630 −2.95630
956956 0.104528 + 0.181049i 0.104528 + 0.181049i
957957 0.273659 + 0.303929i 0.273659 + 0.303929i
958958 −0.309017 + 0.535233i −0.309017 + 0.535233i
959959 0 0
960960 −1.08268 1.20243i −1.08268 1.20243i
961961 −0.809017 1.40126i −0.809017 1.40126i
962962 −1.95630 −1.95630
963963 −1.08268 0.786610i −1.08268 0.786610i
964964 0 0
965965 0 0
966966 0 0
967967 −0.913545 + 1.58231i −0.913545 + 1.58231i −0.104528 + 0.994522i 0.533333π0.533333\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
968968 0.478148 0.828176i 0.478148 0.828176i
969969 0 0
970970 0 0
971971 1.82709 1.82709 0.913545 0.406737i 0.133333π-0.133333\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
972972 −0.500000 + 0.866025i −0.500000 + 0.866025i
973973 0 0
974974 0.500000 + 0.866025i 0.500000 + 0.866025i
975975 −0.978148 + 3.01043i −0.978148 + 3.01043i
976976 −0.913545 + 1.58231i −0.913545 + 1.58231i
977977 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
978978 0 0
979979 0 0
980980 −1.61803 −1.61803
981981 0.809017 + 0.587785i 0.809017 + 0.587785i
982982 1.33826 1.33826
983983 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
984984 0.413545 + 0.459289i 0.413545 + 0.459289i
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 −0.0353579 + 0.336408i −0.0353579 + 0.336408i
991991 −1.95630 −1.95630 −0.978148 0.207912i 0.933333π-0.933333\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
992992 0.809017 + 1.40126i 0.809017 + 1.40126i
993993 0 0
994994 0 0
995995 1.61803 2.80252i 1.61803 2.80252i
996996 −0.309017 + 0.951057i −0.309017 + 0.951057i
997997 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
998998 0 0
999999 −0.809017 + 0.587785i −0.809017 + 0.587785i
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2664.1.bw.c.2515.3 yes 8
8.3 odd 2 2664.1.bw.d.2515.3 yes 8
9.7 even 3 inner 2664.1.bw.c.1627.4 8
37.36 even 2 2664.1.bw.d.2515.3 yes 8
72.43 odd 6 2664.1.bw.d.1627.4 yes 8
296.147 odd 2 CM 2664.1.bw.c.2515.3 yes 8
333.295 even 6 2664.1.bw.d.1627.4 yes 8
2664.1627 odd 6 inner 2664.1.bw.c.1627.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2664.1.bw.c.1627.4 8 9.7 even 3 inner
2664.1.bw.c.1627.4 8 2664.1627 odd 6 inner
2664.1.bw.c.2515.3 yes 8 1.1 even 1 trivial
2664.1.bw.c.2515.3 yes 8 296.147 odd 2 CM
2664.1.bw.d.1627.4 yes 8 72.43 odd 6
2664.1.bw.d.1627.4 yes 8 333.295 even 6
2664.1.bw.d.2515.3 yes 8 8.3 odd 2
2664.1.bw.d.2515.3 yes 8 37.36 even 2