Properties

Label 2664.1.bw.d.1627.4
Level $2664$
Weight $1$
Character 2664.1627
Analytic conductor $1.330$
Analytic rank $0$
Dimension $8$
Projective image $D_{15}$
CM discriminant -296
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2664,1,Mod(1627,2664)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2664, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 4, 3]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2664.1627");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2664 = 2^{3} \cdot 3^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2664.bw (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.32950919365\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{15})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + x^{5} - x^{4} + x^{3} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{15}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{15} - \cdots)\)

Embedding invariants

Embedding label 1627.4
Root \(0.913545 - 0.406737i\) of defining polynomial
Character \(\chi\) \(=\) 2664.1627
Dual form 2664.1.bw.d.2515.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(0.309017 + 0.951057i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-0.809017 - 1.40126i) q^{5} +(0.978148 + 0.207912i) q^{6} -1.00000 q^{8} +(-0.809017 + 0.587785i) q^{9} -1.61803 q^{10} +(0.104528 - 0.181049i) q^{11} +(0.669131 - 0.743145i) q^{12} +(-0.978148 - 1.69420i) q^{13} +(1.08268 - 1.20243i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(0.104528 + 0.994522i) q^{18} +(-0.809017 + 1.40126i) q^{20} +(-0.104528 - 0.181049i) q^{22} +(0.669131 + 1.15897i) q^{23} +(-0.309017 - 0.951057i) q^{24} +(-0.809017 + 1.40126i) q^{25} -1.95630 q^{26} +(-0.809017 - 0.587785i) q^{27} +(-0.978148 + 1.69420i) q^{29} +(-0.500000 - 1.53884i) q^{30} +(-0.809017 - 1.40126i) q^{31} +(0.500000 + 0.866025i) q^{32} +(0.204489 + 0.0434654i) q^{33} +(0.913545 + 0.406737i) q^{36} -1.00000 q^{37} +(1.30902 - 1.45381i) q^{39} +(0.809017 + 1.40126i) q^{40} +(-0.309017 - 0.535233i) q^{41} -0.209057 q^{44} +(1.47815 + 0.658114i) q^{45} +1.33826 q^{46} +(-0.978148 - 0.207912i) q^{48} +(-0.500000 - 0.866025i) q^{49} +(0.809017 + 1.40126i) q^{50} +(-0.978148 + 1.69420i) q^{52} +(-0.913545 + 0.406737i) q^{54} -0.338261 q^{55} +(0.978148 + 1.69420i) q^{58} +(-1.58268 - 0.336408i) q^{60} +(0.913545 - 1.58231i) q^{61} -1.61803 q^{62} +1.00000 q^{64} +(-1.58268 + 2.74128i) q^{65} +(0.139886 - 0.155360i) q^{66} +(-0.913545 - 1.58231i) q^{67} +(-0.895472 + 0.994522i) q^{69} +(0.809017 - 0.587785i) q^{72} -0.209057 q^{73} +(-0.500000 + 0.866025i) q^{74} +(-1.58268 - 0.336408i) q^{75} +(-0.604528 - 1.86055i) q^{78} +(0.309017 - 0.535233i) q^{79} +1.61803 q^{80} +(0.309017 - 0.951057i) q^{81} -0.618034 q^{82} +(0.500000 - 0.866025i) q^{83} +(-1.91355 - 0.406737i) q^{87} +(-0.104528 + 0.181049i) q^{88} +(1.30902 - 0.951057i) q^{90} +(0.669131 - 1.15897i) q^{92} +(1.08268 - 1.20243i) q^{93} +(-0.669131 + 0.743145i) q^{96} -1.00000 q^{98} +(0.0218524 + 0.207912i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{2} - 2 q^{3} - 4 q^{4} - 2 q^{5} - q^{6} - 8 q^{8} - 2 q^{9} - 4 q^{10} - q^{11} + q^{12} + q^{13} - 2 q^{15} - 4 q^{16} - q^{18} - 2 q^{20} + q^{22} + q^{23} + 2 q^{24} - 2 q^{25} + 2 q^{26}+ \cdots + 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2664\mathbb{Z}\right)^\times\).

\(n\) \(1297\) \(1333\) \(1999\) \(2369\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.500000 0.866025i
\(3\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(4\) −0.500000 0.866025i −0.500000 0.866025i
\(5\) −0.809017 1.40126i −0.809017 1.40126i −0.913545 0.406737i \(-0.866667\pi\)
0.104528 0.994522i \(-0.466667\pi\)
\(6\) 0.978148 + 0.207912i 0.978148 + 0.207912i
\(7\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(8\) −1.00000 −1.00000
\(9\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(10\) −1.61803 −1.61803
\(11\) 0.104528 0.181049i 0.104528 0.181049i −0.809017 0.587785i \(-0.800000\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(12\) 0.669131 0.743145i 0.669131 0.743145i
\(13\) −0.978148 1.69420i −0.978148 1.69420i −0.669131 0.743145i \(-0.733333\pi\)
−0.309017 0.951057i \(-0.600000\pi\)
\(14\) 0 0
\(15\) 1.08268 1.20243i 1.08268 1.20243i
\(16\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 0.104528 + 0.994522i 0.104528 + 0.994522i
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) −0.809017 + 1.40126i −0.809017 + 1.40126i
\(21\) 0 0
\(22\) −0.104528 0.181049i −0.104528 0.181049i
\(23\) 0.669131 + 1.15897i 0.669131 + 1.15897i 0.978148 + 0.207912i \(0.0666667\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(24\) −0.309017 0.951057i −0.309017 0.951057i
\(25\) −0.809017 + 1.40126i −0.809017 + 1.40126i
\(26\) −1.95630 −1.95630
\(27\) −0.809017 0.587785i −0.809017 0.587785i
\(28\) 0 0
\(29\) −0.978148 + 1.69420i −0.978148 + 1.69420i −0.309017 + 0.951057i \(0.600000\pi\)
−0.669131 + 0.743145i \(0.733333\pi\)
\(30\) −0.500000 1.53884i −0.500000 1.53884i
\(31\) −0.809017 1.40126i −0.809017 1.40126i −0.913545 0.406737i \(-0.866667\pi\)
0.104528 0.994522i \(-0.466667\pi\)
\(32\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(33\) 0.204489 + 0.0434654i 0.204489 + 0.0434654i
\(34\) 0 0
\(35\) 0 0
\(36\) 0.913545 + 0.406737i 0.913545 + 0.406737i
\(37\) −1.00000 −1.00000
\(38\) 0 0
\(39\) 1.30902 1.45381i 1.30902 1.45381i
\(40\) 0.809017 + 1.40126i 0.809017 + 1.40126i
\(41\) −0.309017 0.535233i −0.309017 0.535233i 0.669131 0.743145i \(-0.266667\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(42\) 0 0
\(43\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(44\) −0.209057 −0.209057
\(45\) 1.47815 + 0.658114i 1.47815 + 0.658114i
\(46\) 1.33826 1.33826
\(47\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(48\) −0.978148 0.207912i −0.978148 0.207912i
\(49\) −0.500000 0.866025i −0.500000 0.866025i
\(50\) 0.809017 + 1.40126i 0.809017 + 1.40126i
\(51\) 0 0
\(52\) −0.978148 + 1.69420i −0.978148 + 1.69420i
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) −0.913545 + 0.406737i −0.913545 + 0.406737i
\(55\) −0.338261 −0.338261
\(56\) 0 0
\(57\) 0 0
\(58\) 0.978148 + 1.69420i 0.978148 + 1.69420i
\(59\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(60\) −1.58268 0.336408i −1.58268 0.336408i
\(61\) 0.913545 1.58231i 0.913545 1.58231i 0.104528 0.994522i \(-0.466667\pi\)
0.809017 0.587785i \(-0.200000\pi\)
\(62\) −1.61803 −1.61803
\(63\) 0 0
\(64\) 1.00000 1.00000
\(65\) −1.58268 + 2.74128i −1.58268 + 2.74128i
\(66\) 0.139886 0.155360i 0.139886 0.155360i
\(67\) −0.913545 1.58231i −0.913545 1.58231i −0.809017 0.587785i \(-0.800000\pi\)
−0.104528 0.994522i \(-0.533333\pi\)
\(68\) 0 0
\(69\) −0.895472 + 0.994522i −0.895472 + 0.994522i
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0.809017 0.587785i 0.809017 0.587785i
\(73\) −0.209057 −0.209057 −0.104528 0.994522i \(-0.533333\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(74\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(75\) −1.58268 0.336408i −1.58268 0.336408i
\(76\) 0 0
\(77\) 0 0
\(78\) −0.604528 1.86055i −0.604528 1.86055i
\(79\) 0.309017 0.535233i 0.309017 0.535233i −0.669131 0.743145i \(-0.733333\pi\)
0.978148 + 0.207912i \(0.0666667\pi\)
\(80\) 1.61803 1.61803
\(81\) 0.309017 0.951057i 0.309017 0.951057i
\(82\) −0.618034 −0.618034
\(83\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −1.91355 0.406737i −1.91355 0.406737i
\(88\) −0.104528 + 0.181049i −0.104528 + 0.181049i
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 1.30902 0.951057i 1.30902 0.951057i
\(91\) 0 0
\(92\) 0.669131 1.15897i 0.669131 1.15897i
\(93\) 1.08268 1.20243i 1.08268 1.20243i
\(94\) 0 0
\(95\) 0 0
\(96\) −0.669131 + 0.743145i −0.669131 + 0.743145i
\(97\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(98\) −1.00000 −1.00000
\(99\) 0.0218524 + 0.207912i 0.0218524 + 0.207912i
\(100\) 1.61803 1.61803
\(101\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(102\) 0 0
\(103\) 0.913545 + 1.58231i 0.913545 + 1.58231i 0.809017 + 0.587785i \(0.200000\pi\)
0.104528 + 0.994522i \(0.466667\pi\)
\(104\) 0.978148 + 1.69420i 0.978148 + 1.69420i
\(105\) 0 0
\(106\) 0 0
\(107\) 1.33826 1.33826 0.669131 0.743145i \(-0.266667\pi\)
0.669131 + 0.743145i \(0.266667\pi\)
\(108\) −0.104528 + 0.994522i −0.104528 + 0.994522i
\(109\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(110\) −0.169131 + 0.292943i −0.169131 + 0.292943i
\(111\) −0.309017 0.951057i −0.309017 0.951057i
\(112\) 0 0
\(113\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(114\) 0 0
\(115\) 1.08268 1.87525i 1.08268 1.87525i
\(116\) 1.95630 1.95630
\(117\) 1.78716 + 0.795697i 1.78716 + 0.795697i
\(118\) 0 0
\(119\) 0 0
\(120\) −1.08268 + 1.20243i −1.08268 + 1.20243i
\(121\) 0.478148 + 0.828176i 0.478148 + 0.828176i
\(122\) −0.913545 1.58231i −0.913545 1.58231i
\(123\) 0.413545 0.459289i 0.413545 0.459289i
\(124\) −0.809017 + 1.40126i −0.809017 + 1.40126i
\(125\) 1.00000 1.00000
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 0.500000 0.866025i 0.500000 0.866025i
\(129\) 0 0
\(130\) 1.58268 + 2.74128i 1.58268 + 2.74128i
\(131\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(132\) −0.0646021 0.198825i −0.0646021 0.198825i
\(133\) 0 0
\(134\) −1.82709 −1.82709
\(135\) −0.169131 + 1.60917i −0.169131 + 1.60917i
\(136\) 0 0
\(137\) 0.809017 1.40126i 0.809017 1.40126i −0.104528 0.994522i \(-0.533333\pi\)
0.913545 0.406737i \(-0.133333\pi\)
\(138\) 0.413545 + 1.27276i 0.413545 + 1.27276i
\(139\) −0.669131 1.15897i −0.669131 1.15897i −0.978148 0.207912i \(-0.933333\pi\)
0.309017 0.951057i \(-0.400000\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −0.408977 −0.408977
\(144\) −0.104528 0.994522i −0.104528 0.994522i
\(145\) 3.16535 3.16535
\(146\) −0.104528 + 0.181049i −0.104528 + 0.181049i
\(147\) 0.669131 0.743145i 0.669131 0.743145i
\(148\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(149\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(150\) −1.08268 + 1.20243i −1.08268 + 1.20243i
\(151\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −1.30902 + 2.26728i −1.30902 + 2.26728i
\(156\) −1.91355 0.406737i −1.91355 0.406737i
\(157\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(158\) −0.309017 0.535233i −0.309017 0.535233i
\(159\) 0 0
\(160\) 0.809017 1.40126i 0.809017 1.40126i
\(161\) 0 0
\(162\) −0.669131 0.743145i −0.669131 0.743145i
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) −0.309017 + 0.535233i −0.309017 + 0.535233i
\(165\) −0.104528 0.321706i −0.104528 0.321706i
\(166\) −0.500000 0.866025i −0.500000 0.866025i
\(167\) 0.913545 + 1.58231i 0.913545 + 1.58231i 0.809017 + 0.587785i \(0.200000\pi\)
0.104528 + 0.994522i \(0.466667\pi\)
\(168\) 0 0
\(169\) −1.41355 + 2.44833i −1.41355 + 2.44833i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(174\) −1.30902 + 1.45381i −1.30902 + 1.45381i
\(175\) 0 0
\(176\) 0.104528 + 0.181049i 0.104528 + 0.181049i
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) −0.169131 1.60917i −0.169131 1.60917i
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 1.78716 + 0.379874i 1.78716 + 0.379874i
\(184\) −0.669131 1.15897i −0.669131 1.15897i
\(185\) 0.809017 + 1.40126i 0.809017 + 1.40126i
\(186\) −0.500000 1.53884i −0.500000 1.53884i
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0.913545 1.58231i 0.913545 1.58231i 0.104528 0.994522i \(-0.466667\pi\)
0.809017 0.587785i \(-0.200000\pi\)
\(192\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(193\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(194\) 0 0
\(195\) −3.09618 0.658114i −3.09618 0.658114i
\(196\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0.190983 + 0.0850311i 0.190983 + 0.0850311i
\(199\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(200\) 0.809017 1.40126i 0.809017 1.40126i
\(201\) 1.22256 1.35779i 1.22256 1.35779i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(206\) 1.82709 1.82709
\(207\) −1.22256 0.544320i −1.22256 0.544320i
\(208\) 1.95630 1.95630
\(209\) 0 0
\(210\) 0 0
\(211\) 0.104528 + 0.181049i 0.104528 + 0.181049i 0.913545 0.406737i \(-0.133333\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0.669131 1.15897i 0.669131 1.15897i
\(215\) 0 0
\(216\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(217\) 0 0
\(218\) 0.500000 0.866025i 0.500000 0.866025i
\(219\) −0.0646021 0.198825i −0.0646021 0.198825i
\(220\) 0.169131 + 0.292943i 0.169131 + 0.292943i
\(221\) 0 0
\(222\) −0.978148 0.207912i −0.978148 0.207912i
\(223\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(224\) 0 0
\(225\) −0.169131 1.60917i −0.169131 1.60917i
\(226\) 0 0
\(227\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(228\) 0 0
\(229\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(230\) −1.08268 1.87525i −1.08268 1.87525i
\(231\) 0 0
\(232\) 0.978148 1.69420i 0.978148 1.69420i
\(233\) −1.95630 −1.95630 −0.978148 0.207912i \(-0.933333\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(234\) 1.58268 1.14988i 1.58268 1.14988i
\(235\) 0 0
\(236\) 0 0
\(237\) 0.604528 + 0.128496i 0.604528 + 0.128496i
\(238\) 0 0
\(239\) −0.104528 0.181049i −0.104528 0.181049i 0.809017 0.587785i \(-0.200000\pi\)
−0.913545 + 0.406737i \(0.866667\pi\)
\(240\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(241\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(242\) 0.956295 0.956295
\(243\) 1.00000 1.00000
\(244\) −1.82709 −1.82709
\(245\) −0.809017 + 1.40126i −0.809017 + 1.40126i
\(246\) −0.190983 0.587785i −0.190983 0.587785i
\(247\) 0 0
\(248\) 0.809017 + 1.40126i 0.809017 + 1.40126i
\(249\) 0.978148 + 0.207912i 0.978148 + 0.207912i
\(250\) 0.500000 0.866025i 0.500000 0.866025i
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 0.279773 0.279773
\(254\) 0 0
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.500000 0.866025i
\(257\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 3.16535 3.16535
\(261\) −0.204489 1.94558i −0.204489 1.94558i
\(262\) 0 0
\(263\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(264\) −0.204489 0.0434654i −0.204489 0.0434654i
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −0.913545 + 1.58231i −0.913545 + 1.58231i
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −0.809017 1.40126i −0.809017 1.40126i
\(275\) 0.169131 + 0.292943i 0.169131 + 0.292943i
\(276\) 1.30902 + 0.278240i 1.30902 + 0.278240i
\(277\) −0.104528 + 0.181049i −0.104528 + 0.181049i −0.913545 0.406737i \(-0.866667\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(278\) −1.33826 −1.33826
\(279\) 1.47815 + 0.658114i 1.47815 + 0.658114i
\(280\) 0 0
\(281\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(282\) 0 0
\(283\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) −0.204489 + 0.354185i −0.204489 + 0.354185i
\(287\) 0 0
\(288\) −0.913545 0.406737i −0.913545 0.406737i
\(289\) 1.00000 1.00000
\(290\) 1.58268 2.74128i 1.58268 2.74128i
\(291\) 0 0
\(292\) 0.104528 + 0.181049i 0.104528 + 0.181049i
\(293\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(294\) −0.309017 0.951057i −0.309017 0.951057i
\(295\) 0 0
\(296\) 1.00000 1.00000
\(297\) −0.190983 + 0.0850311i −0.190983 + 0.0850311i
\(298\) 0 0
\(299\) 1.30902 2.26728i 1.30902 2.26728i
\(300\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −2.95630 −2.95630
\(306\) 0 0
\(307\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(308\) 0 0
\(309\) −1.22256 + 1.35779i −1.22256 + 1.35779i
\(310\) 1.30902 + 2.26728i 1.30902 + 2.26728i
\(311\) −0.978148 1.69420i −0.978148 1.69420i −0.669131 0.743145i \(-0.733333\pi\)
−0.309017 0.951057i \(-0.600000\pi\)
\(312\) −1.30902 + 1.45381i −1.30902 + 1.45381i
\(313\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −0.618034 −0.618034
\(317\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(318\) 0 0
\(319\) 0.204489 + 0.354185i 0.204489 + 0.354185i
\(320\) −0.809017 1.40126i −0.809017 1.40126i
\(321\) 0.413545 + 1.27276i 0.413545 + 1.27276i
\(322\) 0 0
\(323\) 0 0
\(324\) −0.978148 + 0.207912i −0.978148 + 0.207912i
\(325\) 3.16535 3.16535
\(326\) 0 0
\(327\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(328\) 0.309017 + 0.535233i 0.309017 + 0.535233i
\(329\) 0 0
\(330\) −0.330869 0.0703285i −0.330869 0.0703285i
\(331\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(332\) −1.00000 −1.00000
\(333\) 0.809017 0.587785i 0.809017 0.587785i
\(334\) 1.82709 1.82709
\(335\) −1.47815 + 2.56023i −1.47815 + 2.56023i
\(336\) 0 0
\(337\) 0.104528 + 0.181049i 0.104528 + 0.181049i 0.913545 0.406737i \(-0.133333\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(338\) 1.41355 + 2.44833i 1.41355 + 2.44833i
\(339\) 0 0
\(340\) 0 0
\(341\) −0.338261 −0.338261
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 2.11803 + 0.450202i 2.11803 + 0.450202i
\(346\) 0 0
\(347\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(348\) 0.604528 + 1.86055i 0.604528 + 1.86055i
\(349\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(350\) 0 0
\(351\) −0.204489 + 1.94558i −0.204489 + 1.94558i
\(352\) 0.209057 0.209057
\(353\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) −1.47815 0.658114i −1.47815 0.658114i
\(361\) 1.00000 1.00000
\(362\) 0 0
\(363\) −0.639886 + 0.710666i −0.639886 + 0.710666i
\(364\) 0 0
\(365\) 0.169131 + 0.292943i 0.169131 + 0.292943i
\(366\) 1.22256 1.35779i 1.22256 1.35779i
\(367\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(368\) −1.33826 −1.33826
\(369\) 0.564602 + 0.251377i 0.564602 + 0.251377i
\(370\) 1.61803 1.61803
\(371\) 0 0
\(372\) −1.58268 0.336408i −1.58268 0.336408i
\(373\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(374\) 0 0
\(375\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(376\) 0 0
\(377\) 3.82709 3.82709
\(378\) 0 0
\(379\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −0.913545 1.58231i −0.913545 1.58231i
\(383\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(384\) 0.978148 + 0.207912i 0.978148 + 0.207912i
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0.309017 0.535233i 0.309017 0.535233i −0.669131 0.743145i \(-0.733333\pi\)
0.978148 + 0.207912i \(0.0666667\pi\)
\(390\) −2.11803 + 2.35232i −2.11803 + 2.35232i
\(391\) 0 0
\(392\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(393\) 0 0
\(394\) 0 0
\(395\) −1.00000 −1.00000
\(396\) 0.169131 0.122881i 0.169131 0.122881i
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(399\) 0 0
\(400\) −0.809017 1.40126i −0.809017 1.40126i
\(401\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(402\) −0.564602 1.73767i −0.564602 1.73767i
\(403\) −1.58268 + 2.74128i −1.58268 + 2.74128i
\(404\) 0 0
\(405\) −1.58268 + 0.336408i −1.58268 + 0.336408i
\(406\) 0 0
\(407\) −0.104528 + 0.181049i −0.104528 + 0.181049i
\(408\) 0 0
\(409\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(410\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(411\) 1.58268 + 0.336408i 1.58268 + 0.336408i
\(412\) 0.913545 1.58231i 0.913545 1.58231i
\(413\) 0 0
\(414\) −1.08268 + 0.786610i −1.08268 + 0.786610i
\(415\) −1.61803 −1.61803
\(416\) 0.978148 1.69420i 0.978148 1.69420i
\(417\) 0.895472 0.994522i 0.895472 0.994522i
\(418\) 0 0
\(419\) 0.978148 + 1.69420i 0.978148 + 1.69420i 0.669131 + 0.743145i \(0.266667\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(420\) 0 0
\(421\) 0.669131 1.15897i 0.669131 1.15897i −0.309017 0.951057i \(-0.600000\pi\)
0.978148 0.207912i \(-0.0666667\pi\)
\(422\) 0.209057 0.209057
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) −0.669131 1.15897i −0.669131 1.15897i
\(429\) −0.126381 0.388960i −0.126381 0.388960i
\(430\) 0 0
\(431\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(432\) 0.913545 0.406737i 0.913545 0.406737i
\(433\) 1.33826 1.33826 0.669131 0.743145i \(-0.266667\pi\)
0.669131 + 0.743145i \(0.266667\pi\)
\(434\) 0 0
\(435\) 0.978148 + 3.01043i 0.978148 + 3.01043i
\(436\) −0.500000 0.866025i −0.500000 0.866025i
\(437\) 0 0
\(438\) −0.204489 0.0434654i −0.204489 0.0434654i
\(439\) 0.669131 1.15897i 0.669131 1.15897i −0.309017 0.951057i \(-0.600000\pi\)
0.978148 0.207912i \(-0.0666667\pi\)
\(440\) 0.338261 0.338261
\(441\) 0.913545 + 0.406737i 0.913545 + 0.406737i
\(442\) 0 0
\(443\) −0.913545 + 1.58231i −0.913545 + 1.58231i −0.104528 + 0.994522i \(0.533333\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(444\) −0.669131 + 0.743145i −0.669131 + 0.743145i
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) −1.47815 0.658114i −1.47815 0.658114i
\(451\) −0.129204 −0.129204
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) −2.16535 −2.16535
\(461\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) −0.978148 1.69420i −0.978148 1.69420i −0.669131 0.743145i \(-0.733333\pi\)
−0.309017 0.951057i \(-0.600000\pi\)
\(464\) −0.978148 1.69420i −0.978148 1.69420i
\(465\) −2.56082 0.544320i −2.56082 0.544320i
\(466\) −0.978148 + 1.69420i −0.978148 + 1.69420i
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) −0.204489 1.94558i −0.204489 1.94558i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0.413545 0.459289i 0.413545 0.459289i
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) −0.209057 −0.209057
\(479\) 0.309017 0.535233i 0.309017 0.535233i −0.669131 0.743145i \(-0.733333\pi\)
0.978148 + 0.207912i \(0.0666667\pi\)
\(480\) 1.58268 + 0.336408i 1.58268 + 0.336408i
\(481\) 0.978148 + 1.69420i 0.978148 + 1.69420i
\(482\) 0 0
\(483\) 0 0
\(484\) 0.478148 0.828176i 0.478148 0.828176i
\(485\) 0 0
\(486\) 0.500000 0.866025i 0.500000 0.866025i
\(487\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(488\) −0.913545 + 1.58231i −0.913545 + 1.58231i
\(489\) 0 0
\(490\) 0.809017 + 1.40126i 0.809017 + 1.40126i
\(491\) −0.669131 1.15897i −0.669131 1.15897i −0.978148 0.207912i \(-0.933333\pi\)
0.309017 0.951057i \(-0.400000\pi\)
\(492\) −0.604528 0.128496i −0.604528 0.128496i
\(493\) 0 0
\(494\) 0 0
\(495\) 0.273659 0.198825i 0.273659 0.198825i
\(496\) 1.61803 1.61803
\(497\) 0 0
\(498\) 0.669131 0.743145i 0.669131 0.743145i
\(499\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(500\) −0.500000 0.866025i −0.500000 0.866025i
\(501\) −1.22256 + 1.35779i −1.22256 + 1.35779i
\(502\) 0 0
\(503\) −1.82709 −1.82709 −0.913545 0.406737i \(-0.866667\pi\)
−0.913545 + 0.406737i \(0.866667\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0.139886 0.242290i 0.139886 0.242290i
\(507\) −2.76531 0.587785i −2.76531 0.587785i
\(508\) 0 0
\(509\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −1.00000 −1.00000
\(513\) 0 0
\(514\) 0 0
\(515\) 1.47815 2.56023i 1.47815 2.56023i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 1.58268 2.74128i 1.58268 2.74128i
\(521\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(522\) −1.78716 0.795697i −1.78716 0.795697i
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) −0.139886 + 0.155360i −0.139886 + 0.155360i
\(529\) −0.395472 + 0.684977i −0.395472 + 0.684977i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −0.604528 + 1.04707i −0.604528 + 1.04707i
\(534\) 0 0
\(535\) −1.08268 1.87525i −1.08268 1.87525i
\(536\) 0.913545 + 1.58231i 0.913545 + 1.58231i
\(537\) 0 0
\(538\) 0 0
\(539\) −0.209057 −0.209057
\(540\) 1.47815 0.658114i 1.47815 0.658114i
\(541\) −1.82709 −1.82709 −0.913545 0.406737i \(-0.866667\pi\)
−0.913545 + 0.406737i \(0.866667\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −0.809017 1.40126i −0.809017 1.40126i
\(546\) 0 0
\(547\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(548\) −1.61803 −1.61803
\(549\) 0.190983 + 1.81708i 0.190983 + 1.81708i
\(550\) 0.338261 0.338261
\(551\) 0 0
\(552\) 0.895472 0.994522i 0.895472 0.994522i
\(553\) 0 0
\(554\) 0.104528 + 0.181049i 0.104528 + 0.181049i
\(555\) −1.08268 + 1.20243i −1.08268 + 1.20243i
\(556\) −0.669131 + 1.15897i −0.669131 + 1.15897i
\(557\) −1.82709 −1.82709 −0.913545 0.406737i \(-0.866667\pi\)
−0.913545 + 0.406737i \(0.866667\pi\)
\(558\) 1.30902 0.951057i 1.30902 0.951057i
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(570\) 0 0
\(571\) −0.309017 0.535233i −0.309017 0.535233i 0.669131 0.743145i \(-0.266667\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(572\) 0.204489 + 0.354185i 0.204489 + 0.354185i
\(573\) 1.78716 + 0.379874i 1.78716 + 0.379874i
\(574\) 0 0
\(575\) −2.16535 −2.16535
\(576\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) 0.500000 0.866025i 0.500000 0.866025i
\(579\) 0 0
\(580\) −1.58268 2.74128i −1.58268 2.74128i
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0.209057 0.209057
\(585\) −0.330869 3.14801i −0.330869 3.14801i
\(586\) 0 0
\(587\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(588\) −0.978148 0.207912i −0.978148 0.207912i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0.500000 0.866025i 0.500000 0.866025i
\(593\) −0.209057 −0.209057 −0.104528 0.994522i \(-0.533333\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(594\) −0.0218524 + 0.207912i −0.0218524 + 0.207912i
\(595\) 0 0
\(596\) 0 0
\(597\) −0.618034 1.90211i −0.618034 1.90211i
\(598\) −1.30902 2.26728i −1.30902 2.26728i
\(599\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(600\) 1.58268 + 0.336408i 1.58268 + 0.336408i
\(601\) 0.809017 1.40126i 0.809017 1.40126i −0.104528 0.994522i \(-0.533333\pi\)
0.913545 0.406737i \(-0.133333\pi\)
\(602\) 0 0
\(603\) 1.66913 + 0.743145i 1.66913 + 0.743145i
\(604\) 0 0
\(605\) 0.773659 1.34002i 0.773659 1.34002i
\(606\) 0 0
\(607\) 0.669131 + 1.15897i 0.669131 + 1.15897i 0.978148 + 0.207912i \(0.0666667\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) −1.47815 + 2.56023i −1.47815 + 2.56023i
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0.309017 0.535233i 0.309017 0.535233i
\(615\) −0.978148 0.207912i −0.978148 0.207912i
\(616\) 0 0
\(617\) −0.669131 1.15897i −0.669131 1.15897i −0.978148 0.207912i \(-0.933333\pi\)
0.309017 0.951057i \(-0.400000\pi\)
\(618\) 0.564602 + 1.73767i 0.564602 + 1.73767i
\(619\) 0.809017 1.40126i 0.809017 1.40126i −0.104528 0.994522i \(-0.533333\pi\)
0.913545 0.406737i \(-0.133333\pi\)
\(620\) 2.61803 2.61803
\(621\) 0.139886 1.33093i 0.139886 1.33093i
\(622\) −1.95630 −1.95630
\(623\) 0 0
\(624\) 0.604528 + 1.86055i 0.604528 + 1.86055i
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 1.95630 1.95630 0.978148 0.207912i \(-0.0666667\pi\)
0.978148 + 0.207912i \(0.0666667\pi\)
\(632\) −0.309017 + 0.535233i −0.309017 + 0.535233i
\(633\) −0.139886 + 0.155360i −0.139886 + 0.155360i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −0.978148 + 1.69420i −0.978148 + 1.69420i
\(638\) 0.408977 0.408977
\(639\) 0 0
\(640\) −1.61803 −1.61803
\(641\) −0.669131 + 1.15897i −0.669131 + 1.15897i 0.309017 + 0.951057i \(0.400000\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(642\) 1.30902 + 0.278240i 1.30902 + 0.278240i
\(643\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1.95630 1.95630 0.978148 0.207912i \(-0.0666667\pi\)
0.978148 + 0.207912i \(0.0666667\pi\)
\(648\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(649\) 0 0
\(650\) 1.58268 2.74128i 1.58268 2.74128i
\(651\) 0 0
\(652\) 0 0
\(653\) 0.669131 + 1.15897i 0.669131 + 1.15897i 0.978148 + 0.207912i \(0.0666667\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(654\) 0.978148 + 0.207912i 0.978148 + 0.207912i
\(655\) 0 0
\(656\) 0.618034 0.618034
\(657\) 0.169131 0.122881i 0.169131 0.122881i
\(658\) 0 0
\(659\) −0.309017 + 0.535233i −0.309017 + 0.535233i −0.978148 0.207912i \(-0.933333\pi\)
0.669131 + 0.743145i \(0.266667\pi\)
\(660\) −0.226341 + 0.251377i −0.226341 + 0.251377i
\(661\) 0.309017 + 0.535233i 0.309017 + 0.535233i 0.978148 0.207912i \(-0.0666667\pi\)
−0.669131 + 0.743145i \(0.733333\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(665\) 0 0
\(666\) −0.104528 0.994522i −0.104528 0.994522i
\(667\) −2.61803 −2.61803
\(668\) 0.913545 1.58231i 0.913545 1.58231i
\(669\) 0 0
\(670\) 1.47815 + 2.56023i 1.47815 + 2.56023i
\(671\) −0.190983 0.330792i −0.190983 0.330792i
\(672\) 0 0
\(673\) −0.669131 + 1.15897i −0.669131 + 1.15897i 0.309017 + 0.951057i \(0.400000\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(674\) 0.209057 0.209057
\(675\) 1.47815 0.658114i 1.47815 0.658114i
\(676\) 2.82709 2.82709
\(677\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) −0.169131 + 0.292943i −0.169131 + 0.292943i
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) 0 0
\(685\) −2.61803 −2.61803
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 1.44890 1.60917i 1.44890 1.60917i
\(691\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −1.08268 + 1.87525i −1.08268 + 1.87525i
\(696\) 1.91355 + 0.406737i 1.91355 + 0.406737i
\(697\) 0 0
\(698\) 0 0
\(699\) −0.604528 1.86055i −0.604528 1.86055i
\(700\) 0 0
\(701\) 0.209057 0.209057 0.104528 0.994522i \(-0.466667\pi\)
0.104528 + 0.994522i \(0.466667\pi\)
\(702\) 1.58268 + 1.14988i 1.58268 + 1.14988i
\(703\) 0 0
\(704\) 0.104528 0.181049i 0.104528 0.181049i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −0.104528 + 0.181049i −0.104528 + 0.181049i −0.913545 0.406737i \(-0.866667\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(710\) 0 0
\(711\) 0.0646021 + 0.614648i 0.0646021 + 0.614648i
\(712\) 0 0
\(713\) 1.08268 1.87525i 1.08268 1.87525i
\(714\) 0 0
\(715\) 0.330869 + 0.573083i 0.330869 + 0.573083i
\(716\) 0 0
\(717\) 0.139886 0.155360i 0.139886 0.155360i
\(718\) 0 0
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(721\) 0 0
\(722\) 0.500000 0.866025i 0.500000 0.866025i
\(723\) 0 0
\(724\) 0 0
\(725\) −1.58268 2.74128i −1.58268 2.74128i
\(726\) 0.295511 + 0.909491i 0.295511 + 0.909491i
\(727\) −0.104528 + 0.181049i −0.104528 + 0.181049i −0.913545 0.406737i \(-0.866667\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(728\) 0 0
\(729\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(730\) 0.338261 0.338261
\(731\) 0 0
\(732\) −0.564602 1.73767i −0.564602 1.73767i
\(733\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(734\) 0 0
\(735\) −1.58268 0.336408i −1.58268 0.336408i
\(736\) −0.669131 + 1.15897i −0.669131 + 1.15897i
\(737\) −0.381966 −0.381966
\(738\) 0.500000 0.363271i 0.500000 0.363271i
\(739\) −0.209057 −0.209057 −0.104528 0.994522i \(-0.533333\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(740\) 0.809017 1.40126i 0.809017 1.40126i
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(744\) −1.08268 + 1.20243i −1.08268 + 1.20243i
\(745\) 0 0
\(746\) 0 0
\(747\) 0.104528 + 0.994522i 0.104528 + 0.994522i
\(748\) 0 0
\(749\) 0 0
\(750\) 0.978148 + 0.207912i 0.978148 + 0.207912i
\(751\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 1.91355 3.31436i 1.91355 3.31436i
\(755\) 0 0
\(756\) 0 0
\(757\) −1.82709 −1.82709 −0.913545 0.406737i \(-0.866667\pi\)
−0.913545 + 0.406737i \(0.866667\pi\)
\(758\) 0.309017 0.535233i 0.309017 0.535233i
\(759\) 0.0864545 + 0.266080i 0.0864545 + 0.266080i
\(760\) 0 0
\(761\) −0.309017 0.535233i −0.309017 0.535233i 0.669131 0.743145i \(-0.266667\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −1.82709 −1.82709
\(765\) 0 0
\(766\) −1.00000 −1.00000
\(767\) 0 0
\(768\) 0.669131 0.743145i 0.669131 0.743145i
\(769\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 0 0
\(775\) 2.61803 2.61803
\(776\) 0 0
\(777\) 0 0
\(778\) −0.309017 0.535233i −0.309017 0.535233i
\(779\) 0 0
\(780\) 0.978148 + 3.01043i 0.978148 + 3.01043i
\(781\) 0 0
\(782\) 0 0
\(783\) 1.78716 0.795697i 1.78716 0.795697i
\(784\) 1.00000 1.00000
\(785\) 0 0
\(786\) 0 0
\(787\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(791\) 0 0
\(792\) −0.0218524 0.207912i −0.0218524 0.207912i
\(793\) −3.57433 −3.57433
\(794\) 0 0
\(795\) 0 0
\(796\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(797\) 0.309017 + 0.535233i 0.309017 + 0.535233i 0.978148 0.207912i \(-0.0666667\pi\)
−0.669131 + 0.743145i \(0.733333\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −1.61803 −1.61803
\(801\) 0 0
\(802\) 0 0
\(803\) −0.0218524 + 0.0378495i −0.0218524 + 0.0378495i
\(804\) −1.78716 0.379874i −1.78716 0.379874i
\(805\) 0 0
\(806\) 1.58268 + 2.74128i 1.58268 + 2.74128i
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) −0.500000 + 1.53884i −0.500000 + 1.53884i
\(811\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0.104528 + 0.181049i 0.104528 + 0.181049i
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 1.00000 1.00000
\(821\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(822\) 1.08268 1.20243i 1.08268 1.20243i
\(823\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(824\) −0.913545 1.58231i −0.913545 1.58231i
\(825\) −0.226341 + 0.251377i −0.226341 + 0.251377i
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0.139886 + 1.33093i 0.139886 + 1.33093i
\(829\) −1.33826 −1.33826 −0.669131 0.743145i \(-0.733333\pi\)
−0.669131 + 0.743145i \(0.733333\pi\)
\(830\) −0.809017 + 1.40126i −0.809017 + 1.40126i
\(831\) −0.204489 0.0434654i −0.204489 0.0434654i
\(832\) −0.978148 1.69420i −0.978148 1.69420i
\(833\) 0 0
\(834\) −0.413545 1.27276i −0.413545 1.27276i
\(835\) 1.47815 2.56023i 1.47815 2.56023i
\(836\) 0 0
\(837\) −0.169131 + 1.60917i −0.169131 + 1.60917i
\(838\) 1.95630 1.95630
\(839\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(840\) 0 0
\(841\) −1.41355 2.44833i −1.41355 2.44833i
\(842\) −0.669131 1.15897i −0.669131 1.15897i
\(843\) 0 0
\(844\) 0.104528 0.181049i 0.104528 0.181049i
\(845\) 4.57433 4.57433
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −0.669131 1.15897i −0.669131 1.15897i
\(852\) 0 0
\(853\) −0.809017 + 1.40126i −0.809017 + 1.40126i 0.104528 + 0.994522i \(0.466667\pi\)
−0.913545 + 0.406737i \(0.866667\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −1.33826 −1.33826
\(857\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(858\) −0.400040 0.0850311i −0.400040 0.0850311i
\(859\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0.500000 0.866025i 0.500000 0.866025i
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 0.104528 0.994522i 0.104528 0.994522i
\(865\) 0 0
\(866\) 0.669131 1.15897i 0.669131 1.15897i
\(867\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(868\) 0 0
\(869\) −0.0646021 0.111894i −0.0646021 0.111894i
\(870\) 3.09618 + 0.658114i 3.09618 + 0.658114i
\(871\) −1.78716 + 3.09546i −1.78716 + 3.09546i
\(872\) −1.00000 −1.00000
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) −0.139886 + 0.155360i −0.139886 + 0.155360i
\(877\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(878\) −0.669131 1.15897i −0.669131 1.15897i
\(879\) 0 0
\(880\) 0.169131 0.292943i 0.169131 0.292943i
\(881\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(882\) 0.809017 0.587785i 0.809017 0.587785i
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0.913545 + 1.58231i 0.913545 + 1.58231i
\(887\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(888\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(889\) 0 0
\(890\) 0 0
\(891\) −0.139886 0.155360i −0.139886 0.155360i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 2.56082 + 0.544320i 2.56082 + 0.544320i
\(898\) 0 0
\(899\) 3.16535 3.16535
\(900\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(901\) 0 0
\(902\) −0.0646021 + 0.111894i −0.0646021 + 0.111894i
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) −0.104528 0.181049i −0.104528 0.181049i
\(914\) 0 0
\(915\) −0.913545 2.81160i −0.913545 2.81160i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(920\) −1.08268 + 1.87525i −1.08268 + 1.87525i
\(921\) 0.190983 + 0.587785i 0.190983 + 0.587785i
\(922\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(923\) 0 0
\(924\) 0 0
\(925\) 0.809017 1.40126i 0.809017 1.40126i
\(926\) −1.95630 −1.95630
\(927\) −1.66913 0.743145i −1.66913 0.743145i
\(928\) −1.95630 −1.95630
\(929\) 0.104528 0.181049i 0.104528 0.181049i −0.809017 0.587785i \(-0.800000\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(930\) −1.75181 + 1.94558i −1.75181 + 1.94558i
\(931\) 0 0
\(932\) 0.978148 + 1.69420i 0.978148 + 1.69420i
\(933\) 1.30902 1.45381i 1.30902 1.45381i
\(934\) 0 0
\(935\) 0 0
\(936\) −1.78716 0.795697i −1.78716 0.795697i
\(937\) −1.95630 −1.95630 −0.978148 0.207912i \(-0.933333\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(942\) 0 0
\(943\) 0.413545 0.716282i 0.413545 0.716282i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(948\) −0.190983 0.587785i −0.190983 0.587785i
\(949\) 0.204489 + 0.354185i 0.204489 + 0.354185i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −0.209057 −0.209057 −0.104528 0.994522i \(-0.533333\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(954\) 0 0
\(955\) −2.95630 −2.95630
\(956\) −0.104528 + 0.181049i −0.104528 + 0.181049i
\(957\) −0.273659 + 0.303929i −0.273659 + 0.303929i
\(958\) −0.309017 0.535233i −0.309017 0.535233i
\(959\) 0 0
\(960\) 1.08268 1.20243i 1.08268 1.20243i
\(961\) −0.809017 + 1.40126i −0.809017 + 1.40126i
\(962\) 1.95630 1.95630
\(963\) −1.08268 + 0.786610i −1.08268 + 0.786610i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0.913545 + 1.58231i 0.913545 + 1.58231i 0.809017 + 0.587785i \(0.200000\pi\)
0.104528 + 0.994522i \(0.466667\pi\)
\(968\) −0.478148 0.828176i −0.478148 0.828176i
\(969\) 0 0
\(970\) 0 0
\(971\) 1.82709 1.82709 0.913545 0.406737i \(-0.133333\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(972\) −0.500000 0.866025i −0.500000 0.866025i
\(973\) 0 0
\(974\) 0.500000 0.866025i 0.500000 0.866025i
\(975\) 0.978148 + 3.01043i 0.978148 + 3.01043i
\(976\) 0.913545 + 1.58231i 0.913545 + 1.58231i
\(977\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 1.61803 1.61803
\(981\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(982\) −1.33826 −1.33826
\(983\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(984\) −0.413545 + 0.459289i −0.413545 + 0.459289i
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) −0.0353579 0.336408i −0.0353579 0.336408i
\(991\) 1.95630 1.95630 0.978148 0.207912i \(-0.0666667\pi\)
0.978148 + 0.207912i \(0.0666667\pi\)
\(992\) 0.809017 1.40126i 0.809017 1.40126i
\(993\) 0 0
\(994\) 0 0
\(995\) 1.61803 + 2.80252i 1.61803 + 2.80252i
\(996\) −0.309017 0.951057i −0.309017 0.951057i
\(997\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(998\) 0 0
\(999\) 0.809017 + 0.587785i 0.809017 + 0.587785i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2664.1.bw.d.1627.4 yes 8
8.3 odd 2 2664.1.bw.c.1627.4 8
9.4 even 3 inner 2664.1.bw.d.2515.3 yes 8
37.36 even 2 2664.1.bw.c.1627.4 8
72.67 odd 6 2664.1.bw.c.2515.3 yes 8
296.147 odd 2 CM 2664.1.bw.d.1627.4 yes 8
333.184 even 6 2664.1.bw.c.2515.3 yes 8
2664.2515 odd 6 inner 2664.1.bw.d.2515.3 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2664.1.bw.c.1627.4 8 8.3 odd 2
2664.1.bw.c.1627.4 8 37.36 even 2
2664.1.bw.c.2515.3 yes 8 72.67 odd 6
2664.1.bw.c.2515.3 yes 8 333.184 even 6
2664.1.bw.d.1627.4 yes 8 1.1 even 1 trivial
2664.1.bw.d.1627.4 yes 8 296.147 odd 2 CM
2664.1.bw.d.2515.3 yes 8 9.4 even 3 inner
2664.1.bw.d.2515.3 yes 8 2664.2515 odd 6 inner