L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.809 + 0.587i)3-s + (−0.499 − 0.866i)4-s + (0.309 + 0.535i)5-s + (0.104 + 0.994i)6-s − 0.999·8-s + (0.309 − 0.951i)9-s + 0.618·10-s + (−0.669 + 1.15i)11-s + (0.913 + 0.406i)12-s + (−0.104 − 0.181i)13-s + (−0.564 − 0.251i)15-s + (−0.5 + 0.866i)16-s + (−0.669 − 0.743i)18-s + (0.309 − 0.535i)20-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.809 + 0.587i)3-s + (−0.499 − 0.866i)4-s + (0.309 + 0.535i)5-s + (0.104 + 0.994i)6-s − 0.999·8-s + (0.309 − 0.951i)9-s + 0.618·10-s + (−0.669 + 1.15i)11-s + (0.913 + 0.406i)12-s + (−0.104 − 0.181i)13-s + (−0.564 − 0.251i)15-s + (−0.5 + 0.866i)16-s + (−0.669 − 0.743i)18-s + (0.309 − 0.535i)20-s + ⋯ |
Λ(s)=(=(2664s/2ΓC(s)L(s)(0.848−0.529i)Λ(1−s)
Λ(s)=(=(2664s/2ΓC(s)L(s)(0.848−0.529i)Λ(1−s)
Degree: |
2 |
Conductor: |
2664
= 23⋅32⋅37
|
Sign: |
0.848−0.529i
|
Analytic conductor: |
1.32950 |
Root analytic conductor: |
1.15304 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2664(1627,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2664, ( :0), 0.848−0.529i)
|
Particular Values
L(21) |
≈ |
0.9748772351 |
L(21) |
≈ |
0.9748772351 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.5+0.866i)T |
| 3 | 1+(0.809−0.587i)T |
| 37 | 1+T |
good | 5 | 1+(−0.309−0.535i)T+(−0.5+0.866i)T2 |
| 7 | 1+(0.5+0.866i)T2 |
| 11 | 1+(0.669−1.15i)T+(−0.5−0.866i)T2 |
| 13 | 1+(0.104+0.181i)T+(−0.5+0.866i)T2 |
| 17 | 1−T2 |
| 19 | 1−T2 |
| 23 | 1+(−0.913−1.58i)T+(−0.5+0.866i)T2 |
| 29 | 1+(0.104−0.181i)T+(−0.5−0.866i)T2 |
| 31 | 1+(−0.309−0.535i)T+(−0.5+0.866i)T2 |
| 41 | 1+(−0.809−1.40i)T+(−0.5+0.866i)T2 |
| 43 | 1+(0.5+0.866i)T2 |
| 47 | 1+(0.5+0.866i)T2 |
| 53 | 1−T2 |
| 59 | 1+(0.5−0.866i)T2 |
| 61 | 1+(0.978−1.69i)T+(−0.5−0.866i)T2 |
| 67 | 1+(−0.978−1.69i)T+(−0.5+0.866i)T2 |
| 71 | 1−T2 |
| 73 | 1−1.33T+T2 |
| 79 | 1+(0.809−1.40i)T+(−0.5−0.866i)T2 |
| 83 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 89 | 1−T2 |
| 97 | 1+(0.5+0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.582217395222222699501071346745, −8.644574690554241278461109553553, −7.32273988406750788877307680001, −6.65746958700625210386441604091, −5.70793966813640636419896794149, −5.10000914200769290649881939433, −4.45327425892102002172771013666, −3.44033045037640322299623649102, −2.61435072986306681337286900634, −1.37809701761524206132898157254,
0.62985556920797959521104501074, 2.31120160908014076597295096673, 3.43762923178478532971699423892, 4.72449770050354488101958759899, 5.12511763461191213133794369065, 5.96575781046311183078218785527, 6.47831838829440436704150021400, 7.33456324858770289695469786567, 8.066415582333957350191083536837, 8.711004557221679239983108117324