L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.809 + 0.587i)3-s + (−0.499 − 0.866i)4-s + (0.309 + 0.535i)5-s + (0.104 + 0.994i)6-s − 0.999·8-s + (0.309 − 0.951i)9-s + 0.618·10-s + (−0.669 + 1.15i)11-s + (0.913 + 0.406i)12-s + (−0.104 − 0.181i)13-s + (−0.564 − 0.251i)15-s + (−0.5 + 0.866i)16-s + (−0.669 − 0.743i)18-s + (0.309 − 0.535i)20-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.809 + 0.587i)3-s + (−0.499 − 0.866i)4-s + (0.309 + 0.535i)5-s + (0.104 + 0.994i)6-s − 0.999·8-s + (0.309 − 0.951i)9-s + 0.618·10-s + (−0.669 + 1.15i)11-s + (0.913 + 0.406i)12-s + (−0.104 − 0.181i)13-s + (−0.564 − 0.251i)15-s + (−0.5 + 0.866i)16-s + (−0.669 − 0.743i)18-s + (0.309 − 0.535i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2664 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.848 - 0.529i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2664 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.848 - 0.529i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9748772351\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9748772351\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 3 | \( 1 + (0.809 - 0.587i)T \) |
| 37 | \( 1 + T \) |
good | 5 | \( 1 + (-0.309 - 0.535i)T + (-0.5 + 0.866i)T^{2} \) |
| 7 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.669 - 1.15i)T + (-0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (0.104 + 0.181i)T + (-0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + (-0.913 - 1.58i)T + (-0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (0.104 - 0.181i)T + (-0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (-0.309 - 0.535i)T + (-0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + (-0.809 - 1.40i)T + (-0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.978 - 1.69i)T + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.978 - 1.69i)T + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - 1.33T + T^{2} \) |
| 79 | \( 1 + (0.809 - 1.40i)T + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.582217395222222699501071346745, −8.644574690554241278461109553553, −7.32273988406750788877307680001, −6.65746958700625210386441604091, −5.70793966813640636419896794149, −5.10000914200769290649881939433, −4.45327425892102002172771013666, −3.44033045037640322299623649102, −2.61435072986306681337286900634, −1.37809701761524206132898157254,
0.62985556920797959521104501074, 2.31120160908014076597295096673, 3.43762923178478532971699423892, 4.72449770050354488101958759899, 5.12511763461191213133794369065, 5.96575781046311183078218785527, 6.47831838829440436704150021400, 7.33456324858770289695469786567, 8.066415582333957350191083536837, 8.711004557221679239983108117324