L(s) = 1 | + (0.717 + 1.24i)5-s + (−0.0542 − 0.0938i)7-s + 4.03·11-s + (−1.19 − 2.07i)13-s + (−0.5 + 0.866i)17-s + (−1.82 − 3.15i)19-s + 3.53·23-s + (1.46 − 2.54i)25-s − 1.30·29-s + 4.03·31-s + (0.0778 − 0.134i)35-s + (5.87 + 1.58i)37-s + (−1.53 − 2.65i)41-s + 2.43·43-s − 5.40·47-s + ⋯ |
L(s) = 1 | + (0.321 + 0.556i)5-s + (−0.0204 − 0.0354i)7-s + 1.21·11-s + (−0.332 − 0.575i)13-s + (−0.121 + 0.210i)17-s + (−0.417 − 0.723i)19-s + 0.736·23-s + (0.293 − 0.509i)25-s − 0.242·29-s + 0.725·31-s + (0.0131 − 0.0227i)35-s + (0.965 + 0.260i)37-s + (−0.239 − 0.414i)41-s + 0.371·43-s − 0.788·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2664 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.993 + 0.116i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2664 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.993 + 0.116i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.066735234\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.066735234\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 37 | \( 1 + (-5.87 - 1.58i)T \) |
good | 5 | \( 1 + (-0.717 - 1.24i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (0.0542 + 0.0938i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 - 4.03T + 11T^{2} \) |
| 13 | \( 1 + (1.19 + 2.07i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (0.5 - 0.866i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (1.82 + 3.15i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 - 3.53T + 23T^{2} \) |
| 29 | \( 1 + 1.30T + 29T^{2} \) |
| 31 | \( 1 - 4.03T + 31T^{2} \) |
| 41 | \( 1 + (1.53 + 2.65i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 - 2.43T + 43T^{2} \) |
| 47 | \( 1 + 5.40T + 47T^{2} \) |
| 53 | \( 1 + (-3.91 + 6.77i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (3.83 - 6.65i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.56 - 2.70i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.614 - 1.06i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (1.69 + 2.93i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 5.76T + 73T^{2} \) |
| 79 | \( 1 + (-6.34 - 10.9i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (1.01 - 1.76i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (3.53 - 6.12i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 13.0T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.846350460247597462101170076423, −8.167928728179624251217929255172, −7.08389630374652636247454285507, −6.65343891708031478354128232466, −5.88165903598750486991685849000, −4.88735476966402852858122524619, −4.04344091963660453837423640205, −3.05590644663491427302259916187, −2.19778040504948655645376661942, −0.853297674992731000922790301080,
1.03623725306129079246591329151, 1.97550276624280519252539574730, 3.19880897799181487032782769271, 4.22685974463000271996488250424, 4.83523892866618591543243806711, 5.87062056030465496083513753812, 6.51348094658998381087607636189, 7.30406160652861548828511115196, 8.195544272928135526710673500826, 9.119414757375985689628766872528