L(s) = 1 | + (0.717 − 1.24i)5-s + (−0.0542 + 0.0938i)7-s + 4.03·11-s + (−1.19 + 2.07i)13-s + (−0.5 − 0.866i)17-s + (−1.82 + 3.15i)19-s + 3.53·23-s + (1.46 + 2.54i)25-s − 1.30·29-s + 4.03·31-s + (0.0778 + 0.134i)35-s + (5.87 − 1.58i)37-s + (−1.53 + 2.65i)41-s + 2.43·43-s − 5.40·47-s + ⋯ |
L(s) = 1 | + (0.321 − 0.556i)5-s + (−0.0204 + 0.0354i)7-s + 1.21·11-s + (−0.332 + 0.575i)13-s + (−0.121 − 0.210i)17-s + (−0.417 + 0.723i)19-s + 0.736·23-s + (0.293 + 0.509i)25-s − 0.242·29-s + 0.725·31-s + (0.0131 + 0.0227i)35-s + (0.965 − 0.260i)37-s + (−0.239 + 0.414i)41-s + 0.371·43-s − 0.788·47-s + ⋯ |
Λ(s)=(=(2664s/2ΓC(s)L(s)(0.993−0.116i)Λ(2−s)
Λ(s)=(=(2664s/2ΓC(s+1/2)L(s)(0.993−0.116i)Λ(1−s)
Degree: |
2 |
Conductor: |
2664
= 23⋅32⋅37
|
Sign: |
0.993−0.116i
|
Analytic conductor: |
21.2721 |
Root analytic conductor: |
4.61217 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2664(433,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2664, ( :1/2), 0.993−0.116i)
|
Particular Values
L(1) |
≈ |
2.066735234 |
L(21) |
≈ |
2.066735234 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 37 | 1+(−5.87+1.58i)T |
good | 5 | 1+(−0.717+1.24i)T+(−2.5−4.33i)T2 |
| 7 | 1+(0.0542−0.0938i)T+(−3.5−6.06i)T2 |
| 11 | 1−4.03T+11T2 |
| 13 | 1+(1.19−2.07i)T+(−6.5−11.2i)T2 |
| 17 | 1+(0.5+0.866i)T+(−8.5+14.7i)T2 |
| 19 | 1+(1.82−3.15i)T+(−9.5−16.4i)T2 |
| 23 | 1−3.53T+23T2 |
| 29 | 1+1.30T+29T2 |
| 31 | 1−4.03T+31T2 |
| 41 | 1+(1.53−2.65i)T+(−20.5−35.5i)T2 |
| 43 | 1−2.43T+43T2 |
| 47 | 1+5.40T+47T2 |
| 53 | 1+(−3.91−6.77i)T+(−26.5+45.8i)T2 |
| 59 | 1+(3.83+6.65i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−1.56+2.70i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−0.614+1.06i)T+(−33.5−58.0i)T2 |
| 71 | 1+(1.69−2.93i)T+(−35.5−61.4i)T2 |
| 73 | 1−5.76T+73T2 |
| 79 | 1+(−6.34+10.9i)T+(−39.5−68.4i)T2 |
| 83 | 1+(1.01+1.76i)T+(−41.5+71.8i)T2 |
| 89 | 1+(3.53+6.12i)T+(−44.5+77.0i)T2 |
| 97 | 1+13.0T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.119414757375985689628766872528, −8.195544272928135526710673500826, −7.30406160652861548828511115196, −6.51348094658998381087607636189, −5.87062056030465496083513753812, −4.83523892866618591543243806711, −4.22685974463000271996488250424, −3.19880897799181487032782769271, −1.97550276624280519252539574730, −1.03623725306129079246591329151,
0.853297674992731000922790301080, 2.19778040504948655645376661942, 3.05590644663491427302259916187, 4.04344091963660453837423640205, 4.88735476966402852858122524619, 5.88165903598750486991685849000, 6.65343891708031478354128232466, 7.08389630374652636247454285507, 8.167928728179624251217929255172, 8.846350460247597462101170076423